

Industrial Internet of Things and Operational Technology

Guided Industrial Evolution towards Digital

Transformation in the Industry 4.0/5.0 Context.

Habilitation Thesis

Adrian Korodi

2

Contents
1 An overview of scientific, professional, and academic results ... 4

1.1 Scientific and Professional Activity. .. 4

1.2 Didactic Activity ... 8

2 Industrial Interoperability Issues and Solutions in Industry 4.0 ... 10

2.1 Providing Interoperability for Legacy Systems. ... 10

2.1.1 Assuring Interoperability through Modbus to OPC UA conversion 14

2.1.2 Targeting Other Legacy Protocols and Solutions for Industry 4.0 Integration in Real

Industrial Scenarios.. 23

2.2 Approaching and Improving OPC UA. ... 29

2.2.1 Improving OPC UA Publish-Subscribe Mechanism over UDP with Synchronization

Algorithm and Multithreading Broker Application .. 30

2.2.2 Approaching OPC UA Publish–Subscribe in the Context of UDP-Based Multi-Channel

Communication and Image Transmission ... 41

2.2.3 DDS and OPC UA Protocol Coexistence Solution in Real-Time and Industry 4.0 Context

Using Non-Ideal Infrastructure ... 51

2.3 Modern Protocols Emerging and Coexistence in the Automotive Sector. 56

2.3.1 Some/IP, DDS, OPC UA in Automotive .. 57

2.3.2 Zenoh Approach in the Automotive Sector ... 65

3 Approaching New Technologies and Solutions in Supervisory Control and Data Acquisition 73

3.1 IGSS related Advancements in Efficiency. ... 73

3.2 Android and OPC UA based Mobile SCADA Solution. .. 80

3.3 Approaching Node-RED SCADA while Acknowledging Industry 5.0 Requirements. 88

4 Increasing Efficiency in an IIoT Guided Industrial Evolution .. 96

4.1 Decentralized Low-Cost Proactive Historian. .. 99

4.2 Non-Invasive IIoT Solution within the Proactive Historian to Reduce Energy Consumption for

Drinking Water Facilities. ... 103

4.2.1 Proactive historian identifying and applying the energy reduction strategy 103

4.2.2 Proactive historian in complete solution and long-term testing for the energy reduction

 110

4.3 Long Short-Term Memory-Based Prediction Solution Inside a Decentralized Proactive Historian

for Water Industry 4.0. .. 115

4.3.1 Prediction Solution in the Proactive Historian ... 117

4.3.2 Prediction Case Study and Results .. 119

4.4 Non-Invasive Control Solution for Energy Efficiency in Wastewater Treatment Plants. 122

3

4.5 Non-Invasive Control Solution inside Higher-Level OPC UA based Wrapper for Optimizing

Groups of Wastewater Systems. .. 127

4.5.1 Group Control Solution for WWPS-WWTP .. 128

4.5.2 Results.. 131

4.6 Image-Processing-Based Low-Cost Fault Detection Solution for End-of-Line ECUs in Automotive

Manufacturing. .. 136

4.6.1 The Experimental Model .. 136

4.6.2 The Prototype .. 143

4.6.3 Results.. 145

5 Efficient and Human Centered Industry 5.0 Data Propagation and Representation in the context of

Technology Oriented Digital Transformation Interfacing .. 149

5.1 Targeting Broker Based Solution in the Context of Technology Driven Digital Transformation,

from Ignition Sparkplug B to Node-RED. .. 150

5.1.1 Industrial and Scientific Context ... 152

5.1.2 General Architecture and Solution Development .. 153

5.1.3 Case Study and Results ... 158

5.2 Data Propagation on the Operational Technology Level Based on OPC UA Interfacing, within a

Case Study Using Node-RED and Ignition. .. 160

5.2.1 Actual Status of Literature and Industry .. 161

5.2.2 Proposed Solution .. 163

5.2.3 Case Study and Results for Node-RED to Ignition Data Propagation using OPC UA 166

5.3 Solving and Completing Structured Bidirectional Data Propagation and Representation in the

Sparkplug B context, using Ignition and Node-RED. .. 168

5.3.1 Solution Overview .. 170

5.3.2 Case Study and Results ... 173

6 Scientific and academic development directions .. 180

6.1.1 Teaching Development Plan ... 180

6.1.2 Research Development Plan ... 181

References .. 183

4

1 An overview of scientific, professional, and academic results

The current chapter presents briefly the author’s evolution after defending the

Ph.D. thesis considering scientific and professional perspectives, as well as

regarding teaching and tutoring within the Automation and Applied

Informatics department.

1.1 Scientific and Professional Activity.

After defending the Ph.D. thesis entitled “Contributions to the dependability

analysis for automatic systems“ in 16.11.2007, the author published a number

of 57 works ([K-2]-[K-58]), and 1 paper [K-1] being submitted to a journal.

42 scientific papers are indexed in WoS.

Before stepping in other direction with the research, works [K-54]-[K-58] we

more or less related to some parts of the Ph.D. thesis, focusing on availability

and control of mobile robots.

Then, the author approached several different domains, being involved in

interdisciplinary research topics in the following years. These research paths

assured some scientific outcomes that were published as follows:

- [K-52]-[K-53], representing research that involved fuzzy models in the

financial domain. The works were focusing on predicting bankruptcy

based on current financial indicators. Currently both journals are WoS

indexed Q3 journals with IF: 1.

- [K-45]-[K-51], approaching the biomedical engineering domain,

particularly modeling components of the nervous control system

regarding the cardiovascular system on short term. The modelling was

focused on the vestibular nucleus and on vestibular receptors involved

in scenarios as orthostatic stress, but also in the cardiovascular system

elastance function and valve dynamics. Two of the 7 publications were

WoS indexed proceedings.

- [K-44], representing an interdisciplinary research involving Markov

models based predictions in the social work domain, regarding social

marginalization of the elderly. The paper was indexed in WoS.

- [K-41]-[K-43] are researches referring automation in the photovoltaics

domain. The works focused on modeling a PV panel using interpolation,

followed by approaches assuring to reach the maximum power point in

photovoltaic systems. One of the 3 works was published in a WoS

indexed proceedings.

5

Paper [K-40], indexed in WoS, was conceived after several years of working

with the industry, mainly as consultant in automation and SCADA. After year

2014, the author channeled all research focus on IIoT/IoT, Industry 4.0/5.0,

Industrial automation and SCADA domains. Work [K-26] published in a Q1

WoS indexed journal presented an overview over the Industry 4.0 and IIoT

development directions.

Other several works that were not included in the thesis, however within or

related to the main domains are briefly enumerated in the followings:

- Some aspects referring digital transformation were published in two

recent conference proceedings papers. One [K-6] is starting from the

OT level to the cloud data transmission using MQTT and JSON, and one

[K-5] approached the digital transformation in the context of legacy

asset management system.

- The research approached some security considerations on the OT level,

for automation and Supervisory Control and Data Acquisition (SCADA)

systems. Legacy protocol level communication security is proposed

using Trusted Platform Modules (TPM) and Elliptic curve cryptography

(ECC). The legacy protocols related two papers focused on a Modbus

TCP case study with MITM attack scenario [K-27], [K-13] were published

and indexed in Q1 and Q2 WoS journal. ECC for OPC UA study was

approached [K-11] and published in a WoS indexed proceeding. Also,

while protocol conversion and data packing are essential for

interoperability and interoperation, a honeypot for a water pumping

station inside an OPC UA wrapper [K-29] was published in a WoS

indexed proceeding.

- Some studies were somehow independent and were not integrated in a

generic topic. Work [K-9] published in a Q2 Wos indexed journal is

approaching image compression techniques. Paper [K-25] published in

a Q2 WoS indexed journal is focused on enhancing the driver safety by

protection against sun-glare in the automotive sector, while [K-37]

published in WoS indexed proceedings is focusing on home-security

systems in an IoT context.

Due to the large number of published works since defending the Ph.D., only

part of them were selected to be presented in the current thesis. These studies

are grouped into 4 chapters.

Chapter 2 depicts studies focused on IIoT/Industry 4.0 interoperability and

relies on 10 published works, all WoS indexed. It presents solutions that are

conceived for integrating legacy protocols, followed by works focusing OPC UA

6

key enabler of the industrial revolution, new specifications, improvements and

perspectives for industrial scenarios. Finally, emerging protocol studies, and

protocol coexistence solutions are depicted for the automotive sector. Works

[K-30], [K-31], and [K-38] were first important steps in the interoperability

direction and were published in WoS indexed proceedings. Articles [K-19] and

[K-21] were published as Q1 WoS indexed journals, while [K-2], [K-8], [K-

15], [K-16], [K-18] papers were indexed in Q2 WoS journals.

The author’s research was focusing also on new technologies referring to

SCADA. Besides approaching Ignition software, considered one of the most

influential and complex SCADA environments, 6 studies presented in chapter

3 were realized and published referring to IGSS, Android SCADA, and Node-

RED SCADA. IGSS optimal resource allocation concept was published in [K-

39], respectively a web module development in [K-34], both works being in

WoS indexed proceedings. Mobile Android and OPC UA based SCADA solution

was conceived and developed, first as a basic diagram and OPC UA client-

server application [K-35] published in WoS indexed proceedings, and then as

a complex runtime and development system that was published [K-10] in a

Q2 WoS journal. Node-RED based SCADA was approached and published as a

generic solution [K-21], and then developed in a complex application that was

validated in industry [K-8], both works being published in Q2 WoS journals.

Eleven studies [K-7], [K-12], [K-14], [K-17], [K-20], [K-23], [K-24], [K-28],

[K-32], [K-33], [K-36], oriented on increasing efficiency in an IIoT and

Industry 4.0 oriented industrial evolution context are grouped in chapter 4.

The works targeted industrial scenarios mainly in the water sector (9 articles),

but also in the automotive manufacturing (2 articles). Papers [K-32], [K-33],

[K-36] and [K-14] were published in conference proceedings, the first 3 being

WoS indexed. Article [K-23] was published in a Q3 WoS indexed journal.

Works [K-7], [K-12], [K-17], [K-24], [K-28] were published in Q2 WoS

indexed journals, while [K-20] is Q1 WoS indexed.

Three very recent studies [K-1], [K-3], [K-4] are constituting chapter 5, and

are focused on structured and contextualized data propagation in an Industry

5.0 and digital transformation context. Works [K-3] and [K-4] were published

in the summer of 2025 in conference proceedings, while [K-1] is being

submitted to journal.

Since defending the Ph.D. thesis, the author was the director of the following

research and development projects:

1. Efficiency increase in water domain systems functioning through

proactive supervision (EFICIENT)/: 77PTE/2022, 27/06/2022-

27/12/2023 – Director at partner.

7

Works [K-7], [K-10], [K-11], [K-12], [K-13] were between the outcomes

of project 1.

2. Centralizing and optimizing SCADA in the water sector / Bridge Grant

cod PN-III-P2-2.1-BG-2016-0208, 2016-2018 - Grant director.

Works [K-31], [K-32], [K-33], [K-34], [K-35], [K-36], [K-38], [K-39], were

among the outcomes of project 2.

3. Project with Continental Automotive entitled: Artificial Intelligence

Based Prediction in the Electronic Manufacturing, 01.04.2022-

31.01.2023 – Project director

Work [K-14] was among the outcomes of project 3.

4. Project with Continental Automotive entitled: Industry 4.0 Node-RED

Integration solutions for Building Management System Components,

01.02.2023-01.06.2023 – Project director

5. Project with Continental Automotive entitled: Industry 4.0 Node-RED

Integration Solutions for Building Management System Components –

Extended Research, 01.06.2023-01.10.2023 – Project director

6. Grant Continental Automotive entitled: Researching Facility

Management Industry 4.0/IIoT Solutions Regarding

Integrability/Interoperability and Supervision, 01.10.2021-31.03.2022

– Grant director.

7. Project with Continental Automotive entitled: Soluție software în Node-

RED de interfațare, integrare, monitorizare, stocare date de proces,

01.04.2020-01.06.2020 – Project director

8. Project with Continental Automotive entitled: Researching and

Developing Node-RED Integration Solutions for Building Management

System Entities, 01.05.2022-01.07.2022 – Project director

Work [K-8] was among the outcomes of projects 4-8.

9. Project with Hella entitled: Image processing solutions for equipment

testing in the automotive industry, 2017 – Project director.

10.Project with Hella entitled: Prototype research and development for

image processing solution for ECU testing in automotive manufacturing,

2018-2019 – Project director

Work [K-20] was among the outcomes of project 9-10.

The Hirsch index of the author is 12 in WoS, 14 in Scopus, and 17 in Google

Scholar.

The author was invited to review for various journals, such as:

- IEEE Transactions on Industrial Informatics;

8

- IEEE IoT Journal;

- IEEE Access Journal;

- Journal of Manufacturing Systems;

- Sensors;

- IEEE Open Journal of the Industrial Electronics Society;

- Applied Sciences;

- International Journal of Critical Infrastructure Protection;

- Sustainability;

- Journal of Photovoltaics;

- Journal of Process Control;

- Energy Sources, T&F;

etc.

The professional experience of the author consisted also in a significant

consulting and development activities in the automation/SCADA domain for

companies as Louis Berger, Eddacon, CCAT, Tadeco, etc., in various locations

(e.g. Timis, Constanta, Bihor, Ilfov, Satu-Mare, etc.). The activities provided

access to latest industrial technologies regarding equipment and solutions.

Also, the author was external evaluation expert in the European Commission’s

Horizon programme. This activity provided access to state-of-the-art research

directions.

1.2 Didactic Activity

The activity within the Department of Automation and Applied Informatics

took place in the following periods of time: 2003 – 2008; 2009 – present, as

Ph.D. student, Assistant Professor, Lecturer, Associate Professor.

The teaching activity consisted of the followings:

- Undergraduate studies:

 Industrial SCADA solutions,

 Industrial Internet of Things.

 Industrial IoT and Microcontroller Systems Project.

 Automation Elements,

 Linear Systems Theory,

 Nonlinear Systems Theory,

 Systems Theory and Automation,

 Computer Programming,

 Object Oriented Programming,

 Mechatronic Project,

- Graduate studies (Master Programs):

9

 Automation in Photovoltaic Systems (Renewable energy, solar energy),

 Complements of Systems Theory (Automatic Systems Engineering)

 Quality Engineering (Automatic Systems Engineering)

Among the listed subjects, the author introduced the following courses within

the Department of Automation and Applied Informatics, and contributed

significantly for providing the students possibilities to acquire practical skills

along with theoretical concepts, in the context of the current industrial world:

 Industrial SCADA solutions – 4th year Systems Engineering – Course and

Applications,

 Industrial Internet of Things – 4th year Systems Engineering – Course

and Applications,

 Industrial IoT and Microcontroller Systems Project – 2nd year Informatics

- Project.

Regarding undergraduate and graduate student coordination after obtaining

the Ph.D. degree, the didactical activity consisted of the followings:

· Scientific coordinator of more than 140 diploma and dissertation projects.

· Close advisor of 6 Ph.D. students, coordinated by Prof. Ioan Silea.

· Coordinating the research activity of various students within research

groups and guidance towards scientific publications.

Between 2008-2009 the author was a Visiting Professor at the University

Tecnologico de Monterrey, Mexico, where the teaching activity consisted of

the following courses:

(Department of Mechatronics)

 Digital Control,

 Control Engineering,

 Microcontrollers,

 Automatic Control Laboratory,

 Mechatronic Projects.

(Department of Computer Science)

 Intelligent Systems,

 IT Project Management.

Following the Ph.D. thesis, two books were published, [K-59] and [K-60]. [K-

60] was published in 2008 and it is a book supporting the teaching activity

that involves C based programming. [K-59] was published in 2015 and it

supports SCADA, industrial automation and also IIoT related teaching

activities being focused on IGSS and Ignition SCADA environments, PLC and

HMI touch panel programming and OPC interfacing.

10

2 Industrial Interoperability Issues and Solutions in Industry 4.0

Section 2.1 presents solutions that assure interoperability for legacy systems.

These legacy systems comprise of various protocols and local technologies

that represented challenges throughout the years. The target always

represented interoperability/interoperation and open platform technologies

that assure a high TRL. The desired output protocol was Open Platform

Communication Unified Architecture (OPC UA), but there were situations

where for digital transformation Message Queue Telemetry Transport (MQTT)

protocol was also envisioned. Information in Section 2.1 is relying on papers

[K-8], [K-31], [K-38].

Section 2.2 takes further the research regarding the OPC UA protocol and

approaches new specifications that rely on publish-subscribe mechanism and

bring the interfacing closer to real-time. Improvements were approached,

consisting of synchronization algorithm and multithreading broker over UDP,

respectively multi-channel communication and image transmission. The

majority of implemented industrial products based on OPC UA do not include

the publish-subscribe mechanism. Regarding the fact that the Data

Distribution Service (DDS) protocol emerged in robotic manipulators, a DDS-

OPC UA protocol coexistence solution in real-time using non-ideal

infrastructure was conceived. Information from Section 2.2 was published in

works [K-16], [K-18], [K-19].

Section 2.3 is focusing on emerging protocols, gateway and protocol

coexistence solutions in the automotive sector, due to the fact that in-car

automotive solutions rely on some accepted protocols, different from the

manufacturing industry. The automotive sector is slowly including Ethernet-

based protocols like DDS, Scalable Service-Oriented Middleware over IP

(SOME/IP), enhanced Communication Abstraction Layer (eCAL). In the

context of vehicle to everything (V2X) concept, protocol coexistence solutions

were approached for automotive in-car protocols, also OPC UA being

considered. Zenoh emerging protocol is a new candidate for the automotive

sector, and the current section aims to provide a useful comparison between

Zenoh and DDS. Information from Section 2.3 was published in works [K-2],

[K-15], [K-21], [K-30].

2.1 Providing Interoperability for Legacy Systems.

The Industrial Internet of Things (IIoT) means practically a world of

interconnected devices. Besides the physical communication support, the

most important enabler of Industry 4.0 is the interfacing. Protocol related

11

advancements are responsible for eliminating language barriers between

industrial devices and to create a proper frame for exchanging data. The key

enabler in the operational technology (OT) level is the OPC UA protocol,

previously called Object Linking and Embedding for Process Control Unified

Architecture.

In industrial environments, automation equipment typically has a long

operational lifespan, and systems are often designed with proprietary

protocols, making interoperability a challenging endeavor. Ensuring seamless

integration within local automation systems can be very complex, and many

times changes in functional structures must be minimal. Legacy systems refer

to outdated computing software, hardware, technologies, and protocols that

are still widely used by many companies and remain essential for daily

operations.

Moving basic automation on the OT level towards more complex software

structures demands interfacing structures and properly trained integrators.

Field elements are usually integrated and controlled by the first level

automation structures based on PLCs. First level and further higher-level

SCADA integration are necessary for the operators. Furthermore, data will

have to be unified with IT level data coming from other software applications

(e.g. ERP). IIoT/IoT concepts are relying on universal interfacing and

communication. The main goal of IIoT/IoT is to obtain communication in a

proper language among all equipment, even on the same hierarchical level,

and therefore each device must have the capability to exchange data in a

universal way.

The OPC UA interfacing is the key enabler from the integration/interoperability

point of view. Practical experience in automation/SCADA implementations

points out that OPC UA is growing exponentially in coverage, but still many

industries are facing issues in moving forward from legacy protocols. OPC UA

is viewed differently by the integrators when it refers to local automation

integration. PLC or field device integration into higher-level structures through

OPC UA is a target, but many times the protocol is not exposed for

interoperability. The industry becomes more and more involved towards

providing products that include OPC UA Client and/or Server for the local level.

The industry is active in developing embedded OPC UA solutions for PLCs (e.g.

Beckhoff, Siemens, Schneider), HMI panels (e.g. Siemens, Schneider Electric),

gateways (e.g. Softing, Matrikon), SCADA (e.g. Inductive Automation,

Schneider Electric, Siemens). But, still considered in many cases are

centralizing OPC UA Servers residing on a central processing unit (e.g. OPC

UA Server from PTC – each specific local protocol with the specific driver

license, Telecontrol Server Basic – product oriented for Siemens PLCs, etc.).

12

Technologies evolved at the PLC level and products exist with OPC UA server

included. Obviously some of them are missing essential specifications (e.g.

security), and many integrators are not making the interfacing available

because of incomplete tendering documents.

Initial important studies referring OPC UA dating around years 2016-2017

were focused on different aspects related to interoperability/integration.

Authors in [1] are presenting implementations regarding OPC UA Servers

applied on PLCs and OPC UA Client development for Onevue. In [2], OPC UA

is used for the vertical plant integration to provide the process data to all

higher-level applications. In [3], OPC UA interface is considered in

characterizing intelligent cyber-physical sensor systems. Other papers like

[4], [5] are presenting developments focused on integrating OPC UA servers

for monitoring and controlling production processes, respectively in [6] the

authors are considering OPC UA to achieve interoperability of micro-grid

platforms. Using the above-mentioned information, when starting a new

implementation there are few choices to make the local automation panel

interoperable through OPC UA. In practice, the chronology of developments

and the life cycle of the structures are highly reflected in the interfacing and

interoperability. As noted in [7], manufacturing systems often require local

processing units to communicate via OPC UA and existing architectures

present challenges that make OPC UA interfacing difficult to implement. Also,

papers like [3], [7], [8] were mentioning the need of a middleware structure

used as wrapper to obtain interoperability.

In the following years, dating to year 2018, the industry continued to be

concerned with connecting its physical part with the digital infrastructure,

respectively to provide interoperability to the entities. Following Industry 4.0

principles and corresponding studies, the research and industrial community

continued to ground OPC UA as the key IIoT protocol on the OT level (e.g.

[9], [10], [11], [12]). The OPC UA continued to function on client-server basis,

being is platform independent, including security modes and policies, allowing

easy addressing. It provides an address space on the server side containing

brows-able nodes, it may include classic OPC features (DA - Data Access, A&E

- Alarms and Events, HDA - Historical Data Access), etc. Research studies

related to OPC UA were implementing OPC UA servers and clients associated

for different hardware-software equipment. The OPC UA sever research and

development was approached for various process structures (e.g. on the

sensorial level in [13], [14], various OPC UA server developments for the

process parts in [15]), and some are considering various issues/applications

related already functional OPC UA servers (e.g. redundancy in [16], web-

based platform for OPC UA in [17], etc.).

13

Automation equipment typically operates for extended periods, resulting in

numerous legacy systems where invasive modifications are generally avoided.

Industry efforts focus on making these systems interoperable and integrating

them into higher-level supervisory applications. At the same time, horizontal

communication between entities is sought to enhance flexibility and

adaptability. To meet these requirements, non-invasive interfacing with local

automation, protocol conversion for legacy systems, and deployment of local

OPC UA servers enabling both horizontal and vertical interoperability, a

middleware solution is essential.

OPC UA based middleware solutions for the industry were researched in 2016-

2018 (e.g. [18], [19]) to provide interoperability for the local equipment. As

generally known, serial Modbus was one of the most widespread protocol used

in the industry. Even now, serial Modbus and Modbus TCP are omnipresent on

the first level PLC integration (e.g. measuring equipment, frequency

converters).

Beyond ensuring interoperability, local control structures often require further

development or improvement without altering existing PLC software due to

constraints such as warranty restrictions, limited implementation details, or

missing development licenses. In such cases, an OPC UA hardware gateway

that cannot augment the software application proves unsuitable, even when

the local PLC itself offers compatibility.

When implementing industrial structures, several key factors are prioritized:

minimizing development time, reducing process downtime to near zero,

controlling costs, and ensuring ease of maintenance and future scalability.

Considering the above-mentioned aspects, section 2.1.1 presents based on

information from papers [K-38], [K-31] two researched OPC UA wrapping

structures. The two wrapping structures approach Modbus serial and Modbus

TCP as basic protocol. Both solutions were applied in the water industry and

present flexibility to be adapted for other basic legacy protocols. The first one

is a low-cost middleware OPC UA wrapping structure based on Node-RED and

Raspberry Pi. The second solution presents a serial Modbus to OPC UA

wrapping solution with IoT-2040 as hardware and Node-RED as software

environment. The wrappers provide the possibility to monitor and control the

local system, to store and query data into/from a local database, to further

implement control algorithms for existing structures without modifying the

local software.

Currently, the integration of networking, interfacing technologies, and smart

computing in manufacturing continues under the Industry 4.0 paradigm [20].

Core IIoT principles like interconnection of devices anytime and anywhere are

14

applied to improve safety, efficiency, and productivity. The rapid evolution and

widespread adoption of IIoT and Industry 4.0 in recent years have significantly

impacted multiple domains and reshaped traditional manufacturing

organizations [21, 23]. The key towards transformation is to assure

interoperability. This can be solved through integration of IIoT legacy and new

protocols and technologies [22], but also legacy IoT web-based techniques

which sometimes represent the only available option. The objective is to

design systems capable to monitor, collect, exchange, analyze, and deliver

information, structured as networks of interconnected industrial devices that

employ communication technologies to achieve interoperability [23].

Although legacy technologies are outdated from a modern perspective [24],

many remain essential for enterprise infrastructure, making replacement

difficult. Current industry trends highlight the need for evolution and

expansion of manufacturing and monitoring processes, driving the integration

of legacy solutions into IIoT networks [23, 25, 26]. When targeting digital

transformation and the requirement to unify OT-IT levels, a current important

approach is towards the MQTT protocol, as a broker based solution with fast

deployment. Therefore, classic OPC UA to MQTT conversion is important for

OT systems to reach a common ground with the IT and cloud level.

Section 2.1.2 presents based on paper [K-8] the integration issues and

solutions in the automotive manufacturing industry, particularly in a Building

Management System (BMS) facility, where various legacy systems are

functioning. Also, an OPC UA to MQTT conversion solution in Node-RED is

provided.

2.1.1 Assuring Interoperability through Modbus to OPC UA conversion

The section introduces first a cost-effective middleware solutions based on

OPC UA wrapping structure, aimed at facilitating interoperability within local

automation networks. The OPC UA wrapper not only enables system

monitoring and control but also supports the creation of a local data archive

and the implementation of advanced control algorithms. It also enhances tag

packaging for structured data integration into SCADA systems without

requiring changes to the existing local software. The wrapper is conceived to

be a complete hardware-software solution that complements the local

automation structure.

The research considered various hardware and software environments in order

to choose the most suitable variant for a high TRL, low cost, and minimized

implementation times and local process downtime until deployment. From the

hardware point of view several choices were taken into consideration, with

15

selection criteria oriented towards the cost issue, capabilities, industry focus

(e.g. powering, physical communication support, enclosure and industrial

deployment possibilities, operating system), and device popularity (e.g.

higher chance of adoption by integrator, implicit higher reliability).

From a software perspective, the analysis began with OPC vendors to identify

environments capable of addressing integration challenges. OPC DA/UA

wrapper solutions were examined for their role in connecting local SCADA

servers to higher-level control centers, including products from Unified

Automation, Matrikon, etc. Although the Windows-oriented DA client was not

a primary objective, mature wrapping solutions on similar equipment were

reviewed to assess their evolution. The main focus remained on OPC UA

servers and clients, implemented either through SDKs or installation-ready

products, with several key issues considered: platform independence and easy

deployment on hardware suitable for automation panels, with devices such as

Raspberry Pi providing sufficient performance; protocol conversion via

middleware, enabling local protocols to be integrated into OPC UA servers,

targeting open-source solutions; high technological readiness to ensure rapid

implementation in real applications; modularity and flexibility to support new

algorithms and seamless integration with both local and higher-level modules

(e.g., OPC UA servers); ease of knowledge transfer to automation and SCADA

integrators; low cost for both usage and development; additional features,

such as local database support and lightweight SCADA functionalities.

One environment of an OPC products developing company could not be chosen

considering the upper mentioned issues. Two java based software

environments were considered to be the most appropriate for the final

solution: Ignition and Node-RED. Node-RED was chosen, being a lightweight,

open-source and free environment that covers all the presented issues.

Although Ignition was somehow closer to automation/SCADA integrators and

Node-red was coming at that time from other software levels, the flexibility

and openness of Node-red, respectively its flow oriented programming style

would be better exploited and of greater industrial impact for the OPC UA

wrapper concept.

The first step in the wrapper development is the interfacing with the local

structure. The solution was prepared to be tested in real-world applications,

in a case study for the water industry. Modbus TCP was the local protocol

implemented at the PLC level. The Modbus TCP client node was foreseen to

read an array of values from a holding register, starting from an initial

address, using a poll rate of 15 seconds that was considered sufficient for the

wastewater pumping stations (WWPS).

16

After reading from the local structure, the next step involves identifying

individual variables through function blocks and applying bitwise masks. The

separated tags can then support small-scale monitoring and control via

dashboard packages or direct web solutions. A key feature of the wrapper is

its ability to implement supplementary control algorithms without altering the

existing local configuration, using function blocks and payload transfers.

Moreover, variable restructuring and grouping through function blocks can

reduce higher-level SCADA licensing costs (e.g., combining digital alarm and

state bits into words) and optimize SCADA integration.

Database connectivity within the middleware wrapper can be achieved using

packages such as SQLite, MySQL, MSSQL, or PostgreSQL. The wrapper’s

purpose was to enable a lightweight local database for analysis, leading to the

selection of SQLite. After creating the database, data will be inserted as

presented in Fig. 2.1-1. The array obtained from the local PLC is restructured

to select and group tags into a final array. A timestamp is appended and

converted into readable data, after which an insert function is generated and

the payload transmitted to the designated SQLite database.

Fig. 2.1-1 Inserting into the SQLite database

The final step involved creating the OPC UA server and inserting tag values.

The server was established using the OPC UA Server Node, with initial folder–

tag structuring required to enable future browsing. OPC UA commands

(addFolder, addVariable) are transferred successively as payloads to the OPC

UA Server node. Namespace index (ns) and channel/tag name (s) are

transferred as topic to the OPC UA Server node.

Following the creation of the OPC UA server and its folder–variable structure,

the subsequent step was the continuous insertion of values into the defined

tags (e.g. see Fig. 2.1-2). Processed values from the local automation are

transferred as payloads to OPC UA items defined by namespace, tag name,

and datatype. The OPC UA client then operates the write procedure using the

specified server endpoint address and the designated action type.

Fig. 2.1-2 Inserting tag values in the OPC UA server

17

After testing the Modbus TCP – OPC UA wrapper solution in the laboratory,

the following step was represented by a real test scenario in the water sector.

The WWPS comprised a dual-pump electro‑mechanical system equipped with

a level transducer, flowmeter, PAC3200 electrical parameter unit, intrusion

and gas leakage sensors. Control strategies were implemented through an

S7‑1215 PLC. Additional local equipment included a CSM unmanaged switch

for network aggregation, a Geneko 3G communication module, and a KTP 600

HMI. An automation panel of a WWPS is depicted in Fig. 2.1-3.

Fig. 2.1-3 The WWPS automation panel

Fig. 2.1-4 details a dashboard screenshot from the wrapper application,

presenting the emptying procedure of the WWPS. Reaching the high-level limit

and noticing the overcurrent fault at pump 1, the local algorithm starts pump

2. Fig. 2.1-5 displays the most recently extracted rows from the SQLite

database corresponding to the exposed status.

Fig. 2.1-4 Node-red dashboard – WWPS emptying

Fig. 2.1-5 Database View

18

The implemented OPC UA server was accessed by a higher level IGSS SCADA

application using its OPC UA client for testing. As seen in Fig. 2.1-6 the

browsing procedure finds the tags within the OPC UA server, and is able to

see the values of the variables (e.g. 160 for the Level_High_Limit as in Fig.

2.1-4 and Fig. 2.1-5), respectively to proceed to atom mapping.

Fig. 2.1-6 Browsing the previously defined OPC UA server

After obtaining the OPC UA based middleware structure applied as a wrapper

structure for Modbus TCP conversion, the following study presents a serial

Modbus - OPC UA wrapper solution. The structure was designed for real-world

application, using IoT‑2040 hardware and Node‑RED as the software

environment. IoT‑2040 features, 1 GB DDR3 memory, Intel Quark X1020

processor, microSD storage, dual Ethernet ports, RS‑232/RS‑485 interfaces,

USB, 24 VDC supply, and industrial enclosure, provide high processing

capacity, versatile connectivity for local automation, seamless panel

integration, and industrial-grade reliability. The physical support for distance

communication will be assured by the RUT240 router.

From a functional point of view, as shown in Fig. 2.1-7 the serial Modbus

client transfers data to the filtering module, which analyzes, splits, and maps

values to local variables. The processing module then manipulates these

variables, implements diagnostic and protection structures, and extends local

logic with additional algorithms. The structuring module defines the data

format for OPC UA representation, while the sampling control module

schedules tag injection to minimize bandwidth consumption. Finally, the node

value injection module updates the specified node within the OPC UA server.

When an external OPC UA client initiates a control action on a process tag, the

node value change module detects it, while the Modbus structuring module

maps the information to a corresponding Modbus address. The value injection

module then transmits data to the Modbus client, which acts on the external

Modbus slave. Additionally, two monitoring and safety modules were

implemented for both the OPC UA server and Modbus client, ensuring

application status tracking and executing critical safety functions such as

restarting the server, client, or the entire application.

19

Fig. 2.1-7 Functional overview of the serial Modbus – OPC UA wrapper

The OPC UA server being ready for subscriptions, configured with folder and

node setup, authentication, security mode and policy, etc., the wrapper

solution was tested first in laboratory and afterwards on integrating a real

WWPS. Key factors that may cause communication issues with the OPC UA

client include certificate generation and exchange, hostname configuration,

and proper date–time synchronization.

The laboratory setup was based on an Arduino Uno CPU, implementing a

simple process with three LEDs controlled by internal variables and functions

tracking operating hours and start counts. These variables, including LED and

switch states, were integrated into a local serial Modbus slave structure. The

Modbus protocol was tested over both RS232 and RS485 physical layers. As

depicted in Fig. 2.1-8, where Modbus RTU was used, pins 0 and 1 on the

Arduino board were used for serial wiring. An Ethernet link was established

between the IoT‑2040 and the RTU‑240 router, which was configured to

simulate real conditions while supporting both 4G/LTE and WiFi

communications for testing.

The Modbus client was developed in Node‑RED, and an OPC UA server was

defined to host the taken-over Modbus variables. Additional functions were

tested such as variable population scheduling, automatic redeployment on

failure, protection structures, communication and server status checks, and

router access control. For the laboratory setup, the OPC UA client was also

20

implemented in Node‑RED, first deployed on a Windows 10 PC and later on a

Samsung Android 7 device.

Fig. 2.1-8 Schematic view of the implemented Modbus-OPC UA wrapper for the Arduino laboratory test application

A simple dashboard GUI was created to command and monitor the three LEDs.

The status from Fig. 2.1-9 illustrates the OPC UA client GUI, where activating

the second and third switches triggers LED 2 and LED 3 (the state of the real

process is visible in Fig. 2.1-8).

Fig. 2.1-9 Node-RED Dashboard in OPC UA Client application for Windows (PC) and Android (Phone)

The real process consists of a WWPS with four pumps, cascaded with other

stations to ensure wastewater transport across the local sewage network

toward the treatment plant. Local automation is minimal, with pump operation

based on level switch feedback. Each pump provides state and fault signals,

complemented by a general anti‑burglary signal. Electrical parameters such

as voltages, currents, power, and total energy, are measured locally. The first

control level is managed by a Wilo controller, while the station PLC is a Wago

750‑816. The local automation panel is illustrated in Fig. 2.1-10, and Fig.

21

2.1-11 presents the IoT-2040 together with the Teltonika RUT240 router

inside the WWPS in connection with the Wago PLC.

Fig. 2.1-10 A view inside the local automation panel

Fig. 2.1-11 The wrapper inside the WWPS

The architecture of the solution in the real scenario is shown in Fig. 2.1-12.

The wrapper integrates into the functional system non‑invasively, with the

IoT‑2040 connected to the Wago PLC via RS‑232 using the Modbus protocol.

Fig. 2.1-12 Schematic view of the implemented Modbus-OPC UA wrapper inside the WWPS automation

The results obtained with an UA client from Softing company are illustrated in

Fig. 2.1-13, augmented with English explanations, the primary digital tags

are browsed within the local OPC UA server address space.

The Softing OPC UA client offers extensive configuration options (e.g.

response times, session naming) and greater flexibility in handling

inconsistencies such as hostname issues, compared to clients with fewer

settings like IGSS. In IGSS, as in many SCADA systems, certain parameters

are hardcoded in the interface to enhance usability and robustness.

22

Consequently, IGSS SCADA was employed for testing to validate solution

efficiency and ensure operator accessibility through synoptic schemes, alarms,

and graphics. A WWPS synoptic diagram was developed in the SCADA control

room to display pump states, faults, and numerical data (e.g. operating hours,

electrical parameters). All tags were tested, including faults integrated into

the IGSS Alarms and Events module.

Fig. 2.1-13 Softing OPC UA client connected to the wrapper

Two embedded graphs were placed in the diagram and mapped to digital

atoms (see Fig. 2.1-14), and one independent Graph object with detailed

graphical information. As pointed out in the two embedded graphs from Fig.

2.1-14, pumps 3 and 4 started four times between 9:00-13:00 on the 18th of

May 2018. The first two pumps did not start in the rotation algorithm due to

fault states. During testing, burglary and level overflow alarms were triggered

to assess notification times at fault occurrence and resolution. Internal

software faults were also induced, with the system responding as expected.

When the highest‑severity fault was introduced, the application automatically

reinitialized, and Node‑RED fully recovered the wrapper under five minutes.

Fig. 2.1-14 Augmented screenshot from the IGSS application

23

2.1.2 Targeting Other Legacy Protocols and Solutions for Industry 4.0 Integration in Real

Industrial Scenarios

The scenarios from 2.1.1 are covering many use cases. Other real industrial

scenarios are presenting various situations that require a consistent degree of

research to overcome certain obstacles, as depicted in [K-8].

2.1.2.1 M-Bus integration scenario

In the automotive manufacturing industry, the Building Management System

(BMS) is an example where several approaches were necessary in order to

provide Industry 4.0 integration capabilities to hardware-software

solutions/equipment. A first example is referring to gas and water meters that

are preconfigured with M-Bus interface and functioning in a stand-alone

manner in the plant facilities. To integrate on a protocol level M-Bus based

devices, few choices were available and almost all required supplementary

industrial processing units within automation panels. The research approached

Node-RED, as the IIoT solution for protocol integration, wrapping and

conversion. But, in order to cope with the physical communication support

provided by the devices, a conversion unit was adopted (IZAR Center) that

was able to physically centralize and provide the M-Bus protocol under

Ethernet support. Then the integration of the M-Bus data was developed within

Node-RED, to be available to other levels on various ways, using OPC UA,

database and visualization tools. The architecture of the solution is depicted

in Fig. 2.1-15

Fig. 2.1-15 M-Bus integration architecture with Node-RED

24

2.1.2.2 OPC DA integration scenario

The Modbus or S7 integration generally followed the principles from 2.1.1, but

situations occurred where legacy supervision was the end-of-line in the

integration. When it is about PLC integration then legacy SCADA has to be

approached for further interoperability, but when measuring elements are

supervised in proprietary environments then the difficulty is further increased.

As many times legacy SCADA provides at least an OPC DA legacy server,

proprietary environments are usually closed systems. The case of electrical

parameters monitoring using PAC devices is a common practice. The PAC

devices, depending on the version, have a native Modbus protocol

implemented, either TCP or serial. The issue with the serial Modbus is that no

multi-master possibility exists. Siemens proposes the Sentron Power Manager

product for monitoring the electrical parameters that are measured with PAC

devices. The product evolved initially towards Industry 4.0 openness but then

they changed their perspective. Therefore, the Power Manager 3.5 could

activate its own OPC DA server that exposed the parameters within the

address space, off course being dependent of Windows operating system. But,

Power Manager 4.2 application encountered in practice could not expose any

protocol for further integration and the only access to maintain the functioning

product was a rudimentary SQL database access.

As shown in Fig. 2.1-16, an OPC DA – UA wrapper was proposed in order to

elevate the interface for Power Manager 3.5 and to extend the lifetime of the

purchased and functioning software. The chosen environment was Ignition,

using its gateway with licensed OPC DA interfacing. The monitoring graphical

environment from Ignition was used only when implementing the protocol

conversion and wrapping project that was applied to the functioning gateway.

This way, a low-cost, high availability, and platform independent wrapper was

obtained that exposes the data in OPC UA protocol.

Fig. 2.1-16 OPC DA integration using OPC DA-UA wrapper

25

2.1.2.3 HTTP based integration scenario

Sometimes OT level protocols are not available, but as described in [K-8] web-

based solutions are encountered that host data in isolated software

environments that are specific to a hardware equipment, based on the HTTP

protocol. This data acquisition method segregates information rather than

aligning with IoT‑ready systems. To integrate legacy systems, data availability

must follow the IoT paradigm through reformulated acquisition, monitoring,

and control functions. Technically, data exposure to specific software is limited

to the HTTP protocol, with or without an API.

For the integration of a legacy application using HTTP protocol, it is mandatory

to analyze the imposed requirements and limitations of the system. The real

scenario where an API was available is depicted in Fig. 2.1-17 and the system

consists of the OZW 775 hardware–software platform, which communicates

with plant equipment via the KNX protocol, supported by a monitoring tool for

periodic infrastructure checks. The supervision tool is closed and unsuitable

for continuous operation. At the lower level, a web server provides an API that

creates a session at each logon rather than exposing data directly in HTTP

responses. Data is organized into sensor‑specific data‑points, each containing

individual characteristics, with API responses delivering essential device

information. Endpoints handle one data‑point per request, but limitations

include restricted concurrent requests, insufficient documentation, and

heterogeneous data requiring extensive formatting.

Fig. 2.1-17 Real scenario for HTTP based integration

Considering these factors, a dedicated architecture was required to manage

the high volume of HTTP GET requests imposed by the legacy system. Such

interoperability gaps present significant challenges for integrating legacy

infrastructures. The solution was not proposed to be static, but to automate

the whole callback process for the GET requests and allow seamless data

processing in an efficient manner (see Fig. 2.1-18), as opposed to creating a

request individually per each data-point. The dynamic attribution of

configuration parameters for the HTTP request node proved to be more

26

beneficial overall when compared to a classic approach, due to the high

volume of repetitive requests.

Fig. 2.1-18 Data manipulation logic

When HTTP integration is required without an API endpoint, the approach

becomes rudimentary, demanding deeper investigation into alternative data

acquisition methods. Tests on an Ingersoll Rand VX web server (lacking

integrated API support) revealed reliance on outdated acquisition techniques

that obscure software design and provide little usable information. DevTools

proved essential by mapping network requests to backend calls. Initial

attempts to access the server via direct hyperlinks returned HTML responses,

which were unsuitable for constructing reliable logic or ensuring data quality,

as their relevance for extraction was limited. Behind the web server, a certain

request URL was discovered that was able to satisfy the conditions of data

integrity and quality. Each page call returns in this situation a .XML response.

This type of response, different from the expected response type, widely-

utilized JSON, was adequate in obtaining the entailed data. The data

acquisition in the exposed industrial scenario is depicted in Fig. 2.1-19.

Fig. 2.1-19 Data acquisition for the case study presented

2.1.2.4 Event-based approach for data acquisition without transmission protocol

There are situations where even on the OT level, solutions are deployed as

segregated and considered complete. This means that edge devices are taken

27

over into a small proprietary software application on a separate PC that

assures a rudimentary data monitoring and storage. Between the edge devices

and the centralizing application it may be an industrial protocol, but over that

there is no protocol for future integration. In such cases, two options arise: to

get data directly from the edge devices, or to approach the centralizing

application. Usually the first option mean to erase completely the centralizing

application, due to the fact that usually no multi-master protocols are utilized

in the corresponding communication.

The current section approaches an industrial BMS scenario where data from

several temperature and humidity sensors are taken over through Modbus

ASCII and Modbus RTU, and stored in an outdated manner, in text files with

the specific .txt extension (see Fig. 2.1-20). This type of data storage has

certain limitations and disadvantages, such as: linear searching across large

levels of data due to the lack of indexing, no possible relationship between

row entries, lack of relationship between file-stored data and dissimilar

datatypes namely integers, floats and/or booleans. Thus, complete association

with such outdated legacy mechanism comprises a dynamic approach capable

of satisfying the needed requirements for data acquisition and formatting. In

many real scenarios, like in the current one, the second integration option was

required because the legacy structure could not be altered in any way.

Given these constraints, the implementation began by identifying a

methodology to address variable file affixing times. This ruled out the classic

Node‑RED injection node with fixed intervals, leading instead to folder

surveillance triggered by file updates, an event‑driven architecture (EDA). EDA

improves network efficiency by processing only changed data, though most

legacy systems lack mechanisms for easy adoption. To handle this, a

context‑aware flow variable was introduced to detect updated files. Legacy

software added complexity, as extracted data appeared only in buffer or string

formats, causing datatype inaccuracies. Database insertion was designed

dynamically, with timestamp formatting included, and optimized through

batch operations to reduce resource consumption. This approach also enables

integration of disparate tables and extension to new sensors and actuators.

2.1.2.5 OPC UA to MQTT data conversion module in Node-RED

The evolution towards Industry 4.0/5.0 determined an architectural

reconsidering to adopt digital transformation strategies that can bridge the

gap between the OT and IT layers. Due to the fact that according to current

protocol capabilities and the general state of the art in interfacing, many

conceptual approaches are defining broker based solutions to implement

28

publish-subscribe decoupled architectures, MQTT became an important

transport protocol.

Fig. 2.1-20 Scenario for integration without protocol

The poll/response approach has disadvantages that inherently make a system

slower/overwhelmed in the process of retrieving data constantly that in many

cases has not changed. In digital transformation the current tools and trends

in manufacturing indicate that data many times decoupled entities represent

an advantage, and data should be trusted, understood and accessible at all

levels. The subject will be detailed more in the following chapters, the current

section presenting a Node-RED solution that allows accessing data from the

OT level within OPC UA format and exposing it into MQTT topics within a

broker. Obviously MQTT data has to be packed and structures, solutions will

be discussed in following chapters. In the current section, as it can be

observed in fig. Fig. 2.1-21, topics are initiated separately, as simple MQTT

variables that can be further processed and subscribed. The address space of

the OPC UA server coming from the OT level is browsed and variables are

selected and put in a correct format.

Fig. 2.1-21 OPC UA – MQTT data conversion solution

29

2.2 Approaching and Improving OPC UA.

OPC UA protocol is a major enabling technology and research is continuously

carried out to extend and to improve its capabilities, to fulfil the growing

requirements of specific industries and hierarchical levels. Consistent issues

to be approached are related to the latest specifications and the real-time

context that could extend the applicability of the protocol and bring significant

benefits in terms of speed, data volumes, footprint, security. Section 2.2.1

synthesizes information from [K-19] that approaches first the conceptual

analysis to improve the OPC UA interfacing using the Publish-Subscribe

mechanism, focusing on real-time constraints and role distribution between

entities. The conceptual analysis is materialized into a solution that takes OPC

UA Publish-Subscribe over User Datagram Protocol (UDP) mechanism to the

next level by developing a synchronization algorithm and a multithreading

broker application to obtain real time responsiveness and increased efficiency

by lowering the publisher and the subscriber footprint and computational

effort, reducing the difficulty of sending larger volumes of data for various

subscribers and the charge on the network and services in terms of polling

and filtering.

Section 2.2.2 presents research from [K-18], and aims to consider higher

data-volumes, approaching the multi-channel UDP-based communication, and

analyzes the robustness of the developed mechanism in the context of long-

term data transmission. The research extends the applicability of the OPC UA

in the context of image transmission. Although highly needed, the image

transmission after processing is currently beyond the reach of OPC UA or other

legacy industrial protocols, being considered as a separate fraction in the

industrial environment. The concept and developments are applied without

special hardware constraints considering both the end-of-line industrial

manufacturing process in the automotive sector and the car-to-infrastructure

communication.

OPC UA has to consider the coexistence with other emerging real-time

oriented protocols in the production lines. The Data Distribution Service (DDS)

will be present in future architectures in areas as robots, co-bots, and compact

units. Section 2.2.3, presenting the research from [K-16], proposes a solution

to evaluate the real-time coexistence of OPC UA and DDS protocols,

functioning in parallel and in a gateway context. The purpose is to confirm the

compatibility and feasibility between the two protocols alongside a general

definition of criteria and expectations from an architectural point of view,

pointing out advantages and disadvantages in a neutral manner, shaping a

comprehensive view of the possibilities. The solution is applied using non-ideal

infrastructures to accelerate the applicability in the production lines.

30

2.2.1 Improving OPC UA Publish-Subscribe Mechanism over UDP with Synchronization

Algorithm and Multithreading Broker Application

OPC UA, as an Industry 4.0 enabler, was initially applied at the SCADA level

through software environments and centralizing servers. Its advantages soon

extended to other layers, entering the PLC level via the classic client–server

data acquisition component. Over time, companies demanded broader

functionality, incorporating additional characteristics and services. Studies

were conducted to extend application functionality down to the field‑device

level [27-28], or to approach the cloud integration using OPC UA [29].

New OPC UA specifications introduced the publish–subscribe mechanism,

enabling real‑time communication and higher data volumes [30]. Its

applicability in factory automation has been evaluated [31], while further

research explored integration [32] using the open62541 SDK [33], a widely

maintained tool in academic and industrial contexts. Several issues remain

regarding real‑time performance and architectural applicability, requiring

detailed analysis. Parallel studies near industrial deployment have shifted

focus toward lower‑level protocols such as MQTT, in relation to higher‑level

OPC UA [34] and Sparkplug B [35], though without implementing publish–

subscribe according to the new OPC UA specifications.

The OPC UA publish–subscribe mechanism is relatively recent compared to

other communication protocols widely applied in real‑time systems. While

diverse use cases and implementation strategies exist, its envisioned

improvements were designed to incorporate established practices from

industrial protocols already used in real‑time applications. Two protocols that

were considered in [K-19] as more mature in this direction were Some/IP and

DDS. In this context, the corresponding mechanisms were studied for

orienting OPC UA improvements towards previously established common good

practices.

As described in [36], SOME/IP notifications inform subscribers of value

changes or event occurrences, while also allowing them to request updates or

verify variable status through designated methods. The standard separates

responsibilities between the SOME/IP instance, which transports changed

values, and the service discovery component, which manages subscription and

publishing. Notifications can be cyclic, on‑change, conditional, and messages

include the serialized payload length, useful for end‑to‑end verification and

filtering. At protocol level, SOME/IP employs both UDP and TCP to address

congestion, message loss, bit errors, and other transmission faults.

31

Integrating a similar notification module into OPC UA Publish–Subscribe would

reduce constant polling and improve efficiency by delivering only relevant

information. Moreover, OPC UA could enhance modularity and ensure full

decoupling between publishers and subscribers, as well as between system

responsibilities such as information delivery, notification, security, time

management, and reception.

Data Distribution Service (DDS) is applied across domains such as

aeronautics, healthcare, and power industries [37, 38]. Designed for real‑time

control, DDS enables fault‑tolerant exchanges with low latency and advanced

filtering. It ensures modularity through a decoupled publish–subscribe design

and supports time‑based operations with multiple synchronization strategies.

Integration with TSN technology enhances time determinism [39]. Several

DDS practices are considered valuable for OPC UA, particularly in

strengthening real‑time network capabilities.

The objectives were to analyze OPC UA interfacing through the publish–

subscribe paradigm, addressing real‑time constraints and role distribution,

while considering current developments and strategies from the automotive

sector, and also to design and implement an OPC UA pub–sub solution over

UDP, centered on a synchronization algorithm and a multithreading broker to

achieve real‑time responsiveness, higher efficiency, and extended QoS. The

approach aims to minimize subscriber–publisher coupling, facilitate

high‑speed transmission of large data volumes, and reduce network load from

polling and filtering. Availability and safety guide the design, with emphasis

on fault detection, tolerance, and recovery.

2.2.1.1 The Publish-Subscribe Mechanism: Design and Architecture

In the publish–subscribe paradigm, publishers continuously disseminate

information or events, while subscribers are notified upon changes. Beyond

simple data exchange, responsibilities should be distributed across multiple

nodes. The emphasis shifts from node‑to‑node links to the relationship

between information and its targets, enabling efficient distribution regardless

of subscriber count. As suggested in [40], middleware mechanisms can

assume roles independent of payload context, decoupling publishers and

subscribers. This reduces computational load, improves network efficiency,

and ensures predictable message distribution. However, reliance on single

event servers introduces risks in large‑scale systems, as failures may cause

data loss or downtime. For example, an OPC UA factory using only one

publisher server for cloud interfacing is vulnerable without backup

mechanisms. To mitigate such risks, responsibilities must be distributed

32

through middleware entities that notify subscribers and manage publisher–

subscriber interactions. Safety measures for fault detection, tolerance, and

recovery are essential to preserve publishers/subscribers independence.

In [30], publisher and subscriber roles are described as loosely coupled, with

information exchange independent of subscriber count. Their relation relies on

shared understanding of DataSets and publishing details. Message‑oriented

middleware functions as a multicast address for UDP or as a broker for

MQTT/AMQP. With UDP transport, publishers send data to the multicast

address, while subscribers filter messages using DataSetMetaData, which

must be transmitted beforehand. This one‑to‑many strategy increases

complexity and may challenge time constraints. When encryption is added, a

Security Key Server manages key distribution. In large systems, subscribers

must decrypt and filter all incoming messages, creating computational

overhead and hindering real‑time performance. Dynamic publishing with

frequent DataSetMetaData updates further risks network overload.

Middleware, acting as an intermediate entity, should therefore manage

publisher–subscriber relations and, if needed, distribute DataSetMetaData to

reduce complexity and improve efficiency (see Fig. 2.2-1).

Fig. 2.2-1 Proposed OPC UA Middleware Design with Services, in real time scenarios.

Safety measures must be continuously applied, with the entity managing

publisher–subscriber relations verifying the capabilities of all involved nodes.

For real‑time operation, guarantees on delivery, decryption, and filtering times

require that these relations be persistently stored. In OPC UA publish–

subscribe, such functionality could be achieved through a PubSub Directory.

In [40], an Event service is proposed as the entity managing publisher–

subscriber relations. Publishers share information or event types, while the

Event service informs them of interested subscribers, enabling direct

33

notification. However, this reduces decoupling between publishers and

subscribers. As noted, a many‑to‑many approach should be considered for

designing robust and efficient system architectures.

In OPC UA, subscriber‑side filtering involves multiple steps before payload

access, often adding computational overhead and delays that hinder real‑time

performance. When middleware is broker‑based, publishers connect to MQTT

or AMQP entities, achieving decoupling but shifting communication to lower

OSI layers. In this design, subscribers are MQTT/AMQP applications that

bypass OPC UA’s higher‑layer mechanisms, meaning the publish–subscribe

model is only partially implemented. Such broker architectures are mainly

suited for cloud integration and heterogeneous environments, but real‑time

guarantees become difficult. Ensuring fixed transmission cycles, fault

detection, and message loss recovery is complex. Security is limited to

transport‑level protection, as end‑to‑end OPC UA security cannot be

maintained between publishers and non‑OPC UA subscribers.

In [41], a publish–subscribe mechanism using ROS middleware is described,

where subscriber identity and number are abstracted and managed by the

middleware. This design allows publishers and subscribers to be replaced in

real time. In the automotive domain, SOME/IP employs publish–subscribe for

event exchange. Subscribers register to event groups via Service Discovery,

which announces service availability and controls event message sequencing,

ensuring only required messages are received. Similar discovery approaches

exist in other protocols: DDS, for instance, discovers topics independently of

applications, enabling entities to focus on data reception rather than search.

This enhances decoupling and supports safety mechanisms such as

lost‑message detection.

2.2.1.2 Time Synchronization in the Context of OPC UA and TSN Technology

In the context of TSN and OPC UA publish–subscribe, IIoT is increasingly

focused on real‑time functionality from network to application level. OPC UA

aims to support large‑scale, real‑time information exchange with seamless

integration into existing architectures, while TSN provides data‑link layer

solutions for clock synchronization and time‑accurate message delivery. Both

evolve incrementally toward real‑time requirements. For OPC UA, achieving

hard real‑time synchronization requires TSN, particularly its grandmaster

clock standard, though current specifications may not fully meet large‑scale

demands.

Monitoring synchronization between publishers and subscribers is critical in

complex infrastructures. Without dedicated interfaces, managing diverse time

34

bases becomes overwhelming. Services for time management and safety

against desynchronization can enhance scalability and adoption in IIoT.

Additional requirements include notifications for elapsed cycles to avoid

waiting states and unnecessary polling. While OPC UA allows predefined

publishing intervals, current mechanisms lack dedicated services to share

them, forcing subscribers to poll UDP messages. Future improvements could

introduce notify services and time‑triggered transmissions, reducing

computational effort and enabling resynchronization. To ensure efficiency,

TSN time guarantees must be clearly aligned with OPC UA layers,

synchronizing operations within publishers and subscribers on a common time

base (see Fig. 2.2-2). In use cases with strict time constraints, a defined time

reference must be accessible. Details such as Ethernet hardware clocks or

OS‑specific timers can support synchronization both internally and across

entities. Consequently, standardized mechanisms are required to integrate

time‑deterministic technologies.

Fig. 2.2-2 Proposed design with all entities relying to a common time base.

Both internal and external synchronization strategies must be further

standardized through dedicated services and middleware, as seen in other

deterministic technologies. To improve QoS in time‑based operations, the

notion of time should be integrated at higher OSI levels within OPC UA. Future

modules must manage and share access to a common time base, enabling

synchronization across applications with different clocks.

The case study presents a broker application transmitting data at fixed

intervals, with subscribers synchronized to read messages at correct moment.

A synchronization algorithm was developed to ensure timely reception,

minimize polling, and filter only the relevant messages for each subscriber.

35

2.2.1.3 Case Study

The case study introduces a multithreading broker application within the OPC

UA publish–subscribe paradigm, using UDP as the transport protocol and

emphasizing real‑time constraints and role distribution. With multiple entities

involved, the design assigns each to a separate device operating on a

Linux‑based OS (see Fig. 2.2-3).

Fig. 2.2-3 General Architecture of the Case Study.

The publisher is responsible for delivering data without knowledge of the final

receivers. It must first be configured and initialize the publish–subscribe

connection via the UA_Server_addPubSubConnection method. In this case,

the publisher transmits information to a single entity, the broker application.

The next step is creating a WriterGroup, which defines parameters for network

messages. For real‑time constraints, the key parameter is the publishing

interval in UA_WriterGroupConfig. The payload, represented as a hexadecimal

number (e.g., 0xDC), is encapsulated in a DataSetMessage, independent of

how data is split among subscribers. For example, each two bits may

correspond to sensor values collected by a field device. While the publishing

interval is set according to publisher needs, it should align with consumer

requirements in practice. Finally, the publisher connects directly to the broker

using its IP and port, without requiring a multicast address.

The broker application enhances efficiency by filtering and routing relevant

information while synchronizing entities. It comprises two components: one

receives data from the OPC UA publisher, and the other republishes extracted

data at defined intervals to subscribers. Most filtering occurs at this stage of

exchange. Since receiving and transmitting involve distinct time constraints

and tasks, a multithreading design was adopted to improve performance and

synchronization. Although the SDK [33] lacks native multithreading support,

the broker’s high‑level architecture separates its two components into

independent threads (see Fig. 2.2-4).

36

Future subscribers are expected to provide the broker with timing details,

targeted information, and unique identifiers through a one‑shot transmission

based on the classic client–server paradigm. Configuration may occur via a

JSON file at runtime or through periodic communication with a dedicated

server holding consumer details. In the broker implementation, these

parameters, timing, information targets, IDs, are hard‑coded for the use case.

Fig. 2.2-4 Architecture and Interaction of the Broker Application.

The first thread manages the subscriber component, responsible for extracting

targeted data according to subscriber preferences. Execution begins by

initializing a PubSubConnection with the OPC UA publisher over a unicast

address. Once connected, the component listens for relevant network

messages. Subscription is implemented classically, interrogating incoming

traffic with minimal recurrence to avoid loss of DataSetMessages, while

parsing message fields and filtering data types.

The second thread manages the publisher component. Depending on

subscriber count and required time intervals, it initializes an OPC UA publisher

instance with multiple WriterGroups, each configured for specific publishing

rates. Extracted data is buffered before transmission, enabling historical

access and improving availability. Prior to assignment to a DataSet, an

encoding step adds a unique subscriber ID. In the case study, IDs are defined

as hexadecimal values (0xF for subscriber1, 0xA for subscriber2). The

encoding shifts extracted data by four bits and inserts the ID into the least

significant bits. Thus, the payload 0xDC becomes 0xCF for subscriber1 and

37

0xDA for subscriber2. Following encoding, the payloads are encapsulated in

DataSetMessages and published at distinct intervals by the WriterGroups.

Transmission occurs via a multicast address, enabling one‑to‑many

communication and shared access among subscribers, as described in [30].

In case study 2, two subscriber entities were implemented to consume

payloads from the OPC UA publisher, each with distinct requirements for

targeted data and real‑time behavior. Subscriber1 expected updates every

second, while Subscriber2 required data every three seconds; the design also

proved functional with intervals below 10 ms. The broker’s main purpose was

to prevent continuous network interrogation and reduce filtering by leveraging

the publisher’s predefined intervals. On the subscriber side, message

reception was executed only at the expected time intervals. Additional

mechanisms were introduced to handle potential desynchronization.

In some scenarios, proper timing configuration for both broker and subscribers

is insufficient. Real‑time synchronization becomes essential when no common

time base exists and time references are not continuously exchanged. The

challenge lies in dynamically aligning transmission and reception intervals

across separate entities. Polling describes subscriber desynchronization from

the broker and occurs in two cases: when the subscriber receives data

classified as invalid (e.g., malformed or improperly executed network

messages), respectively when the subscriber receives a valid message, but of

a different type than expected under OPC UA protocol. In both cases, the

arrival time of the desired message is unpredictable, requiring repeated

execution of the receive function. Such polling states can only be avoided

through synchronization between the sending and receiving moments.

From the subscriber’s abstract perspective, two scenarios emerge based on

message validity and recurrence. Messages encoded with the subscriber’s ID

are classified as valid, while all others are considered invalid regardless of

subscriber count. For example, recurrence intervals were set at 100 ms for

valid messages and 1000 ms for invalid ones, and vice versa. (see Fig. 2.2-5).

Scenario 1 consists of when an invalid message or polling state is detected,

and consequently the delay is set to zero, allowing immediate receive

operations until a synchronization event occurs (e.g. reception of a valid

message). Once synchronized, the delay returns to the subscriber’s predefined

interval, ensuring efficient operation without unnecessary polling. Stable

networks maintain synchronization, with desynchronization possible only

when subscriber delivery intervals overlap.

38

Scenario 2 mirrors Scenario 1, but intersections between broker delivery

intervals occur at each cycle. Dynamic delay adjustment during invalid

messages resynchronizes broker and subscriber, maintaining recurrence and

avoiding message loss.

Fig. 2.2-5 The 2 scenarios from the Subscriber Perspective regarding recurrence and validity of the messages.

In both scenarios, the synchronization algorithm proved efficient, with testing

confirming correct behavior in broker and subscriber operations. For universal

UDP broker solutions in OPC UA, encoding of desired information is critical to

synchronization. If the broker shuts down, subscribers enter polling until a

valid message is received, then re-enters into normal pub-sub operation.

2.2.1.4 Results

During the case study, the open62541 SDK lacked a finalized Subscriber API.

Considering the receiving solution compliant with [30], lower software layers

may still perform network interrogations or buffer multicast traffic

independently of the application layer. To address this, a polling state was

defined at the application level, with the goal of ensuring subscribers process

only relevant messages. This improves upon the receive concept described in

[30], where subscribers must handle irrelevant or unknown messages, and

aligns with the implementation in [33].

After implementation, several results were observed:

39

- Publisher abstraction – A single published DataSet transmitted

information to two subscribers with different preferences and timing,

simplifying configuration and enabling efficient large‑scale data transfer.

- Multithreaded broker – Independent components improved speed and

responsiveness.

- Data buffering – The broker stored data in transit, providing an essential

service often missing in OPC UA.

- Backup functionality – The broker could republish stored data if the

publisher failed, assuming publishing roles and enabling safety

measures to notify consumers of malfunctions.

- Stable delivery – Encoding and synchronization ensured data was

provided at consistent intervals, avoiding unnecessary transmission

rates.

- Subscriber decoupling – Subscribers remained unaware of publisher

details, reinforcing the loosely coupled design described in [30].

- Synchronization algorithm efficiency – Polling and excessive filtering

were minimized, reducing computational effort and resource usage.

- Real‑time assurance – Synchronization guaranteed timely data delivery,

with resync options supporting controller‑to‑controller scenarios.

- OPC UA consistency.

Some results are depicted in Fig. 2.2-6 - Fig. 2.2-9, the Publisher sending and

the Broker filtering and transmitting forward, followed by each Subscriber

entering in stable state after a synchronizing procedure.

Fig. 2.2-6 The data sent to the broker from the terminal of the Publisher.

Fig. 2.2-7 Terminal of the Broker App receiving data from the Publisher and transmitting it to the subscribers.

40

Fig. 2.2-8 Terminal of Subscriber1 receiving the desired data at time intervals of 3 second.

Fig. 2.2-9 Terminal of Subscriber2 receiving the desired data at time intervals of 1 second.

An analysis of the results, highlighting advantages and disadvantages from a

development perspective, is presented in Table 2-1.

Table 2-1 Case study results analysis

Entity Advantages Disadvantages Achievements

OPC UA

Publishers

-moderate difficulty in

implementation

-easy configuration for

different subscribers

 -easy way of sending

larger amounts of

data for multiple

subscribers with

different expectation

41

with different

expectation

-totally decoupled

from the consumers of

the information

Broker App -multithreading

capabilities

-real time capabilities

-high complexity in

implementation

-an initial first step

is needed for

obtaining

subscribers

preferences and IDs

(hard-coded

information in the

current

implementation)

-real time behaviour

and synchronization

with the subscribers

-data buffering

-backup publisher

-safety capabilities in

case the publisher is

shutting down

OPC UA

Subscribers

-easy/moderate

difficulty in

implementation

-totally decoupled

from the provider of

the information

-synchronization

capabilities based on

the described

Synchronization

Algorithm

- an initial first step

is needed for

transmitting

preferences and ID

(hard-coded

information in the

current

implementation)

-real time behaviour

and synchronization

with the Broker App

-less polling of the

network

-less filtering for the

desired information

2.2.2 Approaching OPC UA Publish–Subscribe in the Context of UDP-Based Multi-Channel

Communication and Image Transmission

Industrial image processing emerged out of necessity but was adopted without

full integration into industrial protocols or production processes. Currently,

communication with other systems relies on MES binary request–approval

procedures and bit‑wise result storage, while image storage and transfer lack

protocol standardization. Despite this, image processing remains closely tied

to production lines. For example, [43] demonstrates hydraulic axial pump

diagnosis by converting signals into images via continuous wavelet transform

and extracting features from time–frequency representations. Similarly, [44]

applies image processing and deep learning to detect deformation in

pantograph contact strips of railway vehicles. In [K‑20], the authors present

a low‑cost OpenCV‑based image processing solution for detecting defects in

automotive parts manufacturing, specifically faulty or missing pins, clips, and

42

board cracks in ECUs. Most studies treat industrial processes and image

transmission as separate domains. In augmented reality, [45] proposes

Node‑RED with MQTT for communication with mechatronic devices, though

image‑related tasks remain focused on the iOS mobile application.

Beyond production, the automotive industry emphasizes autonomous and

enhanced driving, concepts closely tied to image processing,

car‑to‑infrastructure and car‑to‑car communication, and safety procedures.

Significant progress has been achieved in image processing for autonomous

driving [46], while research also targets safety improvements, such as

detecting infrastructure cracks [47] and accident identification from traffic

images [48]. Intelligent roadside devices now process traffic data using the

YOLO‑CA model, forwarding results to central systems for rescue operations

and signaling vehicles. Although [48] focuses on image processing, it extends

into car‑to‑infrastructure communication. Similarly, [49] explores queue

length estimation via image processing, though results remain

simulation‑based. Since interoperability in car‑to‑infrastructure

communication requires industrial protocols, works such as [K‑21] and [K‑30]

propose OPC UA as a standardized solution.

Studies such as [50] examine industry standards compliance through OPC UA.

Recent specifications (e.g. [30]) enable advancement toward the publish–

subscribe paradigm, further developed in [K‑21] and [K‑19]. Within this

context, the objectives of research [K‑18] are: to extend [K‑21] by analyzing

publish–subscribe under real‑time constraints and higher data volumes,

including long‑term single transmissions; to investigate multi‑channel UDP

communication to reduce data transfer duration; to broaden OPC UA

applicability to image transmission; to apply the mechanism without hardware

constraints, validated through case studies in automotive end‑of‑line testing

and car‑to‑infrastructure communication.

Research and industrial testing of OPC UA publish–subscribe applications

employ diverse hardware, though real‑time capabilities favor low‑cost,

resource‑constrained embedded devices in controller‑to‑controller scenarios.

For example, [51] used multiple Xilinx boards to run publisher–subscriber

exchanges of UADP messages with time analysis, while [52] implemented OPC

UA entities on Raspberry Pi 3B+ using open‑source stacks to measure

efficiency. TSN provides time guarantees through specific standards. As noted

in [53] and [54], OPC UA with TSN is expected to extend to field devices, while

[55] highlights real‑time applicability but only via simulations. Studies confirm

that synchronization, low latency, and flexibility can be achieved by adapting

TSN standards to OPC UA [51], [56].

43

With IIoT growth, the number of networked devices and required operations

increases, making data management and extraction from distributed sources

critical [57]. Complex architectures must evolve to meet reliability,

robustness, and efficiency demands. OPC UA publish–subscribe enhances

system capabilities, opening new use cases. In this context, an image

transmission application based on OPC UA was implemented in to analyze the

mechanism’s potential from multiple perspectives.

2.2.2.1 Image-transmission over OPC UA Publish-Subscribe concept

Image transmission and processing are increasingly present in IIoT

applications. Research has explored integrating OPC UA with automotive

communication protocols, enabling publish–subscribe solutions for smart

infrastructures [K‑30], [K‑21]. In automotive manufacturing, image

processing is widely applied. For example, [K‑20] describes automatic optical

inspection (AOI) during ECU board end‑of‑line testing and packaging.

Companies test tens of thousands of products daily using image processing to

detect defects, while packaging is also image‑assisted. These solutions

generate images alongside bitwise/tag‑based results, which are integrated

into MES communication. However, image transfer often occurs in a

rudimentary manner without standardized industrial protocols. An end-of-line

process flow is presented in Fig. 2.2-10, where image processing is an

important part for testing and packaging in automotive parts manufacturing.

After pin insertion and ECU enclosure positioning, boards are tested with AOI

to detect defects. The AOI system communicates with the MES, requesting

approval to start testing and transmitting bitwise results indicating pass or

fail. For Industry 4.0 integration, OPC UA represents the optimal protocol for

image processing, provided it meets real‑time, speed, and volume

requirements. Building on [K‑19] and [K‑21], bitwise/tag‑based

communication ensures real‑time constraints through the publish–subscribe

mechanism. The objective is to extend OPC UA publish–subscribe beyond prior

work to support long‑term, high‑volume, and faster data transmission,

enabling full integration of image processing within the production flow.

Complete vertical/horizontal interoperability could be achieved using OPC UA.

As depicted in Fig. 2.2-10, after testing, boards are transported and placed

into packaging boxes, with ECU counting performed through image

processing. Once a box reaches capacity, a final image of its contents is stored

before sealing and shipment. In this case, full OPC UA interoperability is also

required, as image sizes are larger while transmission intervals are longer.

44

Fig. 2.2-10 End-of-line ECU testing using image processing in automotive manufacturing.

For image processing, the YOLOv3 model [58] was employed. YOLO uses a

single deep convolutional network that divides the input image into a grid,

with each cell predicting bounding boxes and object classes. Candidate boxes

are consolidated through post‑processing, and training on the COCO dataset

enables detection across 80 object classes with reduced false positives.

Additional operations relied on OpenCV, a cross‑platform library widely used

for real‑time computer vision. OpenCV supports major deep learning

frameworks such as PyTorch, TensorFlow, Caffe under the Apache2 license.

The image transmission application consists of two OPC UA instances, a

publisher and a subscriber, designed to send images via the Pub‑Sub

mechanism. Each pixel is published individually and reconstructed at the

subscriber side once all pixel values are received. Transmission speed and

image quality serve as key indicators of reliability and efficiency. Tests were

conducted with multiple images of varying resolutions and three application

versions, each using different publishing intervals to evaluate how delivery

speed affects image quality. Publisher and subscriber exchange

DataSetMessages, each containing a pixel value in byte format (8‑bit integer,

range 0–255), generated by the Publisher’s DataSetWriter. UDP was used as

the transport protocol. The complete transmission process follows four main

steps, as in Fig. 2.2-11.

Fig. 2.2-11 OPC UA Publish-Subscribe image transmission steps.

45

Transmission durations and scenario‑specific operations were measured using

custom Linux timer functions. Networking tests were conducted on 2.4 GHz

and 5 GHz networks. Although OPC UA Pub‑Sub is real‑time oriented, it cannot

guarantee timing without TSN integration. Desynchronization may occur

between publisher and subscriber devices. The Pub‑Sub design primarily

targets one‑to‑many communications. Yet, to meet real‑time demands and

avoid latency or desynchronization, multiple independent Pub‑Sub channels

can be deployed. This approach offers scalability for industrial operations that

were previously infeasible under the traditional client–server paradigm.

2.2.2.2 Architecture and Implementation

The OPC UA image transmission application consists of two components: a

publisher on the transmitting device and a subscriber on the receiving device.

Additional operations, such as image segmentation before transmission and

reconstruction afterward, must follow a defined sequence.

The first step in image segmentation and storage involves dividing the image

into approximately equal pixel blocks. Each block is stored in a separate

buffer, later accessed by the OPC UA publisher during transmission.

Segmentation depends on both the number of Pub‑Sub channels selected and

the overall image size. Step 4 is the reverse process of the first step, the

image reconstruction. The subscriber simultaneously receives image

segments across multiple Pub‑Sub channels and stores them in dedicated

buffers. After transmission, these buffers are combined into a pixel file, with

each segment placed in the correct order. When all channels transmit

successfully and pixel values align properly, the image is accurately

reconstructed on the receiver. The architecture is illustrated in Fig. 2.2-12.

Fig. 2.2-12 General system architecture of the image transmission.

The publishing and receiving processes are synchronized to exchange pixel

values at defined intervals, though each device maintains its own time base.

This lack of a common reference can affect application behavior, particularly

46

when publishing intervals fall below 10 ms. While minor pixel losses may not

significantly impact image quality, a safety mechanism was developed for the

subscriber side. Based on the target image resolution, each buffer

corresponding to a Pub‑Sub channel is tested and all received operations are

counted. At transmission end, if buffer values do not match the expected pixel

count, default values are inserted to complete the buffer. This ensures image

reconstruction even when transmission is incomplete. By assessing

reconstructed image quality, observers can identify which channels

experienced desynchronization, losses, and approximate when they occurred.

2.2.2.3 Case Study 1 - Image Transmission over One and Four Pub-Sub Channels

A complete image transmission over OPC UA publish–subscribe was tested

using a single channel, with a medium‑large color image successfully

transmitted. In the case of Fig. 2.2-13 and Fig. 2.2-14, Wifi connection was

used, as a worst case physical support scenario. The quality of received

images was evaluated against the originals. Publishing intervals were set

between 1 ms (per pixel value) and 5 ms to ensure stability and maximize

fidelity to the target image. A total of 773,490 pixel values were transmitted

between publisher and subscriber at varying intervals. Results demonstrate

that the system supports lengthy transmissions, approximately 12.9 minutes

at 1 ms/pixel and 64.5 minutes at 5 ms/pixel, while successfully delivering

complete images.

The second phase of the case study addresses a more realistic industrial

scenario, using a lower‑resolution black‑and‑white image to reduce the

number of pixel values transmitted and achieve a practical transmission

interval. The selected image contains 46,225 pixel values as payload. The

results are in Fig. 2.2-15 and Fig. 2.2-16.

Fig. 2.2-13 The received image and the target image at 1 ms/pixel_value recurrence (phase 1).

47

Fig. 2.2-14 The received image and the target image at 5 ms/pixel_value recurrence (phase 1)

Fig. 2.2-15 The received image and the target image at 1 ms/pixel_value recurrence (phase 2).

Fig. 2.2-16 The received image and the target image at 4 ms/pixel_value recurrence (phase 2)

In the second phase, the identical image was successfully received with a 4 ms

publishing interval. A faster transmission was inherent, lowering the

probability of desynchronization compared to phase 1, even under similar

recurrence conditions. From Fig. 2.2-15, desynchronization occurred in the

48

third quarter of the image with less degree of alterations. With the phase 2

target image, transmission time improved substantially: about 47 seconds at

a 1 ms interval and 3.12 minutes at a 4 ms interval

The next step meant to increase the number of Pub-Sub channels to 4.

Publishing intervals were configured identically to ensure that the duration of

all four transmissions remained approximately equal. The results proved that

the transmitter and received images were identical (the same as Fig. 2.2-16)

at a publishing interval of 1 ms (1 millisecond/pixel value for all the 4

channels). A full transmission was obtained in approximately 12 sec.

2.2.2.4 Case Study 2 - Image Transmission over Twenty Pub-Sub Channels

The case study seeks to achieve feasible transmission times while

demonstrating the scalability of multi‑channel OPC UA publish–subscribe

communication. Its objectives include integrating the concept into industrial

scenarios using relevant process images and evaluating the impact of network

capacity during implementation.

Case study 2 refers to 3 scenarios: the first consists of the previously

discussed car-to-infrastructure communication, the second analyses the

transmission of counted ECU boards image at the EoL in automotive

manufacturing, while the third targeted ECU automatic optical inspection

results in an automotive production line.

The goal was to obtain an image delivery time of under 3 sec. for the car- to-

infrastructure communication, under 12 sec. for the EoL packaging boxes, and

under 3 sec. the automatic optical inspection results.

For the car‑to‑infrastructure communication scenarios were, using 20 Pub‑Sub

channels with a 1 ms publishing interval achieved delivery in ~2.4 seconds,

producing an image identical to the target. These results confirm the

scalability of the multi‑channel transmission concept, enabling flexible

configurations for future applications.

For the final packaging boxes, ECUs were continuously counted, before

delivering them to clients. Once the set limit is reached, the MES is notified

that packaging is complete and the final image is stored locally. In the

box‑filling cycle, execution times are as follows: insertion of a new ECU

requires at least 12 seconds, detection of a new box by the optical inspection

system takes ~6 seconds, and complete filling, depending on box size and ECU

count, exceeds 2.5 minutes. OPC UA multi‑channel publish–subscribe image

transmission results were promising. The target image was converted to

grayscale and delivered fault‑free to the destination, with the received image

49

shown in Fig. 2.2-17. The complete image transmission was achieved in

7.85 sec. From a time perspective, this performance enables transmitting an

image for each board inserted into the packaging box.

Fig. 2.2-17 OPC UA Publish-Subscribe 20 channel image transmission for packaging boxes in the automotive

manufacturing - the received image in grayscale and the target image.

For the ECU EoL automatic optical inspection from [K‑20], the image‑based

defect detection was achieved in 6.5 seconds. Considering other production

line procedures, approximately 12 seconds are available to transmit inspection

images within each board testing cycle. Only defect images (negative fault

detection results) are stored and transmitted, typically 1–2 per cycle, since a

single image may capture multiple defects in an analyzed area (e.g. a

connector). With the implementation of 20‑channel OPC UA publish–subscribe

transmission, results were encouraging: the target image was converted to

grayscale and transmitted completely to the destination. The received image

in comparison with the target one is shown in Fig. 2.2-18.

A full image transmission was realized in 2.52 sec. Given the 12 sec. window

in each board testing cycle, approximately 4 images can be transmitted using

the 20‑channel solution.

Fig. 2.2-18 OPC UA Publish-Subscribe 20 channel image transmission for ECU automatic optical inspection process

in the automotive manufacturing: the received image in grayscale and the target image.

50

2.2.2.5 Results of the Study

Each case study provided key insights into the mechanism’s stability and

robustness, the factors influencing transmission in industrial contexts, and the

application’s performance, confirming its potential to meet objectives in a new

domain of the OPC UA protocol. In Table 2-2, a comparative analysis of all case

study outcomes highlights the advantages and disadvantages of each

application version within its designated context.

Table 2-2 Outcome analysis for the case studies
Case

study

Number of

Pub-Sub

Channels

Total time for a

full transmission

of an identical

image

Factors that can

produce instability

Conclusions

1-a 1 64.5 minutes for
phase 1
(publishing interval
of 5 ms / pixel
value)

3.12 minutes for
phase 2
(publishing interval
of 4 ms / pixel
value)

- high volume of
information needed
to be transmitted by
1 channel

- high length of the
transmission
increase the
probability of
desynchronization
between devices

- not feasible for
industrial processes

1-b 4 12 seconds
(publishing interval
of 1 ms / pixel
value)

- lower volume of
information needed
to be transmitted by
1 channel

- not guaranteeing a
low probability of
desynchronization
between devices

- improved
performances but far
from the desired
outcome

2 20 2.4 seconds
(publishing interval
of 1 ms / pixel
value)

- adequate volume
of information
needed to be
transmitted by 1
channel

- guaranteeing very
low probability for
desynchronization
between devices

- feasible in industrial
scenarios for specific
processes

51

2.2.3 DDS and OPC UA Protocol Coexistence Solution in Real-Time and Industry 4.0 Context

Using Non-Ideal Infrastructure

Following [K-19] and [K-18], the next step was to cover other important

component of the OT level, the industrial robots, respectively to establish

solution for interoperation. Manufacturing production lines incorporate robots,

co‑bots, and compact units, where future architectures will likely adopt the

real‑time DDS protocol defined by the Object Management Group (OMG) (see

Fig. 2.2-19). In this context, analyzing the coexistence of OPC UA and DDS

publish–subscribe solutions under real‑time industrial requirements is

essential. This chapter represents work [K‑16], presenting a tool and

methodology to evaluate the real‑time performance of both protocols, tested

in parallel and within a gateway configuration.

Fig. 2.2-19 Schematic view of OPC UA—DDS protocol coexistence in the Industry 4.0 context.

Due to the slow adoption of TSN in industry, faster approaches for real‑time

constraints on operating systems and equipment are required. Therefore,

there is a need to: define criteria for evaluating DDS and OPC UA in non‑ideal

systems facing industrial challenges, analyze their real‑time behavior, propose

an architecture enabling parallel use and interaction of both protocols,

implement a DDS–OPC UA gateway application.

DDS employs a data‑centric model with a global data space (GDS) accessible

to all entities, where information is propagated once roles are defined. Its

publish–subscribe paradigm is topic‑based, with subscribers expressing

interest and matched to publishers. DDS also supports request/reply

communication, ensuring efficiency in one‑to‑many, one‑to‑one, and

many‑to‑many scenarios. Entities can be grouped into domains, creating

isolated virtual spaces for flexible and complex data exchange.

52

Communication relies on the Real‑Time Publish–Subscribe (RTPS) protocol,

ensuring interoperability over standard networks while meeting real‑time

requirements. At the transport layer, RTPS operates over TCP/UDP/IP,

maintaining portability and compatibility across DDS implementations. On

Linux systems, DDS provides configurable blocking intervals for

resource‑contending functions, with prioritization mechanisms applied when

limits are exceeded. The eProsima Fast DDS [59] open‑source SDK was

employed for DDS entity implementation. Its API is divided into two layers,

one tied to the wire protocol and another abstracting DDS concept, while

built‑in mechanisms ensure real‑time behavior. For high‑volume, time‑critical

communication, DDS provides the Persistence Service, enabling rapid

recovery after shutdown. By storing context details and the last notified data

changes between components, the system can quickly restore its previous

communication state, meeting hard real‑time constraints.

DDS implementations span diverse domains and use cases. In [60], the

advantages of the publish–subscribe paradigm and RTPS adoption for

interoperability across vendors are highlighted, with applications such as

underwater vehicle data exchange demonstrating feasibility in extreme

environments. In [61], challenges in configuring QoS for real‑time systems

and the absence of DDS standards are noted, increasing complexity in

understanding dynamic models. A framework‑based tool is proposed to

enhance software reusability across heterogeneous IoT architectures.

ROS 2, an open‑source framework for complex robotic applications, is gaining

traction in both research and industry [62,63]. DDS has been validated as its

communication middleware [64], enabling decentralized communication and

supporting hard real‑time requirements. DDS in ROS 2 defaults to

asynchronous publication, where data are queued and handled by background

threads, suitable for non‑time‑critical nodes. Synchronous publication,

controlled by the main thread, ensures precise timing and minimal latency for

time‑critical events. ROS 2 adoption in academia remains early, hindered by

migration challenges from ROS 1 [65]. Nonetheless, its Industry 4.0 oriented

features are expected to drive replacement. In [66], DDS is emphasized as

central to ROS 2 objectives, including multi‑robot cooperation, embedded

systems with limited resources, real‑time constraints, and communication

over unstable networks.

2.2.3.1 Envisioned Architecture for the Analysis

To advance industrial solutions, a multi‑node mirror architecture was defined

with three DDS nodes and three OPC UA nodes, each assigned specific roles

53

on native or virtualized Linux systems. The architecture (see Fig. 2.2-20)

supports both performance comparison and gateway‑based interaction

scenarios, aiming to confirm compatibility and feasibility between the two

protocols while establishing general criteria and expectations. Rather than

relying on trial‑and‑error, the research community must provide neutral

guidelines, performance metrics, and architectural perspectives to highlight

advantages and limitations comprehensively.

Fig. 2.2-20 The envisioned architecture for analysis.

OPC UA and DDS control nodes act as primary data consumers, running on

Raspberry Pi 4 devices with native Linux systems. In real scenarios, they

represent the main control segment (e.g., PLC, robot, or production line

controllers). Each node integrates two communication subcomponents, the

subscriber receiving updates from the update node at defined intervals, and

the publisher forwarding information to diagnose nodes for safety or

diagnostic operations. Update nodes serve as the main producers and

distributors, accessible only to control nodes. Diagnose nodes receive data

exclusively from control nodes, performing validation or acting as gateways

for OPC UA–DDS interaction (e.g., transferring PLC data via OPC UA to a

DDS‑controlled motor). Gateway configurations rely on shared buffers

between complementary entities, ensuring architectural flexibility.

Evaluation criteria, defined in [K‑16], include first real‑time responsiveness

testing of publish/subscribe operations at device level, compared against ideal

expectations. Percentage‑based results estimate performance in industrial

scenarios, highlighting similarities and differences between OPC UA and DDS

under identical conditions, confirming their compatibility even in non‑ideal

setups. Also, include data buffering analysis, comparing received values with

54

expected amounts. This ensures not only execution monitoring but also

acknowledgment of data integrity, with network stability as a critical factor.

2.2.3.2 Case Studies and Results

Two case studies were conducted. The first examines how DDS and OPC UA

respond under standard OSs without enhanced real‑time capabilities and

non‑ideal networks lacking transmission guarantees, across varying time

intervals. The second introduces a gateway solution for protocol interaction,

switchable without architectural changes.

Case study 1 focuses on behavior analysis of both protocols. Evaluation criteria

confirm comparable responses, supporting future cross‑domain architectures

that integrate DDS and OPC UA. In non‑ideal infrastructures, real‑time

performance declines below 10 ms expectations, this study quantifying

degradation at 10, 5, 2, and 1 ms intervals. The first criterion measures

function calls executable as intervals shorten, with results obtained via a

custom scheduler running independently from communication operations. A

clearer view on each multithreaded node application is shown in Fig. 2.2-21.

Fig. 2.2-21 Multithreading nodes from an architectural perspective.

Functions call verification process results are shown in Table 2-3 for DDS, and

in Table 2-4 for OPC UA for the first criteria. The tables present success rates

for each time recurrence.

The second criteria concentrates on data-buffering mechanism, to highlight

OS and device desynchronization influence on receiving data (see results in

Table 2-5).

55

Table 2-3 DDS Nodes

DDS Update Node – Virtualized Linux OS – Publish Operation
Publish Operation – Recurrent Execution Check

10 ms 5 ms 2 ms 1 ms
≈ 100 % ≈ 90 % ≈ 74 % ≈ 64 %

TOTAL Number of Tests : 2790

DDS Control Node – Native Linux OS – Publish Operation
Publish Operation – Recurrent Execution Check

10 ms 5 ms 2 ms 1 ms

≈ 100 % ≈ 93 % ≈ 84.6 % ≈ 77 %

TOTAL Number of Tests: 2865
DDS Control Node – Native Linux OS – Subscribe Operation

Subscribe Operation – Recurrent Execution Check

10 ms 5 ms 2 ms 1 ms

≈100 % ≈ 85 % ≈65 % ≈48.5 %

TOTAL Number of Tests: 2805

DDS Diagnose Node – Virtualized Linux OS – Subscribe Operation
Subscribe Operation – Recurrent Execution Check

10 ms 5 ms 2 ms 1 ms

≈100 % ≈85 % ≈65 % ≈47 %

TOTAL Number of Tests: 3015

Table 2-4 OPC UA Nodes

OPC UA Update Node – Virtualized Linux OS – Publish Operation
Publish Operation – Recurrent Execution Check

10 ms 5 ms 2 ms 1 ms

≈100 % ≈95 % ≈81.2 % ≈56 %

TOTAL Number of Tests: 2685

OPC UA Control Node – Native Linux OS – Publish Operation
Publish Operation – Recurrent Execution Check

10 ms 5 ms 2 ms 1 ms

≈100 % ≈100 % ≈87 % ≈56 %
TOTAL Number of Tests: 2970

OPC UA Control Node – Native Linux OS – Subscribe Operation
Subscribe Operation – Recurrent Execution Check

10 ms 5 ms 2 ms 1 ms

≈100 % ≈100 % ≈91 % ≈85 %

TOTAL Number of Tests: 3015
OPC UA Diagnose Node – Virtualized Linux OS – Subscribe Operation

Subscribe Operation – Recurrent Execution Check

10 ms 5 ms 2 ms 1 ms

≈100 % ≈87.5 % ≈77% ≈64 %

TOTAL Number of Tests: 3015

Table 2-5 Data buffering success rate

 OPC UA Control Node OPC UA Diagnose Node DDS Control Node DDS Diagnose Node

10 ms 95% 93% 91% 91%

5 ms 95% 86% 83% 83%

2 ms 86% 76% 64% 64%

1 ms 77% 62% 43% 43%

56

Subscriber‑side data buffering results confirm the findings from recurrent

function call verification. Both criteria show proportional outcomes, with lower

percentages for buffering, validating the added impact of network stability on

data exchange beyond OS real‑time limitations.

The second case study addresses the gateway application, which enables

configurable data exchange between control nodes. Results highlight the

influence of device desynchronization and network instability. Data

propagation through the multi‑node architecture is observable via the digital

signal generated by the DDS control node from OPC UA payloads (see Fig.

2.2-22). At 100 ms recurrence, data transmission is accurate. For intervals

below 10 ms, the gateway maintains delivery, but closer to 1 ms external

factors, such as delayed OS responses across nodes, become significant. Since

the signal depends on multiple node exchanges, any delay perturbs payload

delivery, increasing the risk of inaccuracies.

Fig. 2.2-22 Generated Digital Signal based on payload delivered by the Gateway Application at 10ms recurrence.

2.3 Modern Protocols Emerging and Coexistence in the Automotive Sector.

The current chapter continues the investigation of concepts from 2.1 and 2.2,

but oriented towards the automotive sector. With the mentioned advances in

the area of OPC UA interfacing and the continuously growing requirements of

the industrial automation world, combined with the more and more complex

configurations of ECUs inside vehicles and services associated to car to

infrastructure and even car to car communications, the gap between the two

domains must be analyzed and filled. This gap occurred mainly because of the

rigidness and lack of transparency of the software-hardware part of the

automotive sector and the new demands for car to infrastructure

communications. Analyzing the VSOME/IP notify–subscribe mechanism, a

VSOME/IP–OPC UA gateway can bridge protocol gaps between automotive and

automation domains. Compatibility and real‑time responsiveness must be

assessed within diverse service‑oriented architectures for automotive IoT

Ethernet communication. This feasibility study is realized through a

multi‑protocol gateway enabling data exchange among SOME/IP, DDS, and

57

eCAL entities for future communication scenarios. In this context, section

2.3.1 depicts the findings from works [K-15], [K-21], [K-30].

As automotive systems transition to zonal and software‑defined architectures,

efficient and adaptable communication protocols are increasingly critical. Case

study validation is essential to assess middleware suitability for real‑world

integration. Section 2.3.2 presents findings from [K‑2], introducing Zenoh as

a lightweight, data‑centric protocol built on modern networking paradigms.

Zenoh was implemented in an automotive scenario with distributed zone

controllers and an in‑vehicle server, with DDS serving as a benchmark due to

its proven performance in prior research. Experimental results highlight

Zenoh’s strengths in message integrity and resource efficiency, particularly

under high‑frequency data transmission. Unlike traditional middleware, Zenoh

demonstrates strong adaptability in distributed environments with limited

computational resources.

2.3.1 Some/IP, DDS, OPC UA in Automotive

Automotive developments increasingly emphasize centralized and integrated

control of dynamic environments. V2X technology enables vehicle‑to‑vehicle

(V2V) and vehicle‑to‑infrastructure (V2I) communication via wireless

networks, with control centers collecting safety data (accidents, traffic,

weather) through LTE, CCTV, and GPS [69]. Premium vehicles now integrate

over 100 ECUs, driving demand for inter‑ECU communication. Gateways

remain critical, ensuring reliable message transmission across heterogeneous

networks. For example, [70] describes a gateway supporting CAN, Wi‑Fi, and

RS‑232. Research also explores risk models for intelligent transportation

systems [71] and reinforcement learning for connected vehicle control at

intersections [72]. OPC UA is increasingly recommended for automotive

communication, including traffic signal integration [73]. Studies highlight

converting intra‑car CAN systems into OPC UA, with gateway servers

implemented using Unified Automation C# SDK [74]. Broader perspectives on

new in‑vehicle protocols are presented in [75].

Modern vehicles require high bandwidth and low latency, beyond the

capabilities of CAN and FlexRay. Ethernet is expected to become the backbone

of next‑generation architectures, supported by high‑performance gateways to

centralize ECU data, while CAN, LIN, and FlexRay remain for specific

applications [76]. Vehicles are evolving toward intelligent, Internet‑connected

systems where cyclic signal‑based communication (LIN, CAN, FlexRay)

coexists with service‑based, event‑driven IP networks. SOME/IP introduces

service‑oriented transmission, reducing unnecessary traffic [77]. Currently,

58

the industry views SOME/IP, particularly VSOME/IP (Genivi’s implementation),

as the next‑generation protocol for in‑car ECU communication [78,79]. In V2I

contexts, the first objective is to design a gateway enabling conversion and

wrapping between SOME/IP and OPC UA. The first step in this direction was

presented in [K-30], using the classic client-server paradigm for OPC UA.

The approach in [K‑21] outlines steps for implementing the OPC UA publish–

subscribe mechanism and testing it alongside the VSOME/IP notify–subscribe

mechanism through a gateway. The study also provides insights into real‑time

behavior and future perspectives.

With microprocessors increasingly shaping vehicle architectures, supported by

Adaptive AUTOSAR and POSIX‑based operating systems, new concepts and

communication technologies can be analyzed in industrial contexts,

highlighting concrete advantages and limitations. Beyond SOME/IP, DDS is

also investigated as a key automotive protocol [80–81]. In [K‑15], another

objective was achieved: offering insights into state‑of‑the‑art communication

protocols aligned with automotive demands and exploring a gateway solution

based on AUTOSAR‑compliant Ethernet technologies such as SOME/IP and

DDS, together with the emerging middleware eCAL.

2.3.1.1 Approaches regarding Some/IP and OPC UA

The first approach from [K-30] targeted a Some/IP – OPC UA gateway. The

research considered the classic OPC UA client/server based representation,

and the VSOME/IP request-response mechanism.

The gateway general architecture is presented in Fig. 2.3-1, and targeted a

V2I communication as depicted in the case study scheme from Fig. 2.3-2.

Fig. 2.3-1 General architecture of the VSOMEIP-OPC UA gateway.

Two scenarios were tested. First, elementary messages were sent from the

OPC UA server (e.g. “0xAA” message as in Fig. 2.3-3), and reaching from the

59

OPC UA client and VSOME/IP server to the VSOME/IP client. The VSOME/IP

client sends back an acknowledgement message (e.g. “0xCC in Fig. 2.3-3).

Fig. 2.3-2 Case study implemented architecture.

Fig. 2.3-3 Screenshots associated to the informational
flow for case study 1.

A second case study targeted external OPC UA server access, to test the OPC

UA client. The OPC UA server is part of a real industrial plant and linked to a

WinCC Professional v13 SCADA system. Two tags, electrical energy values

within the plant, were retrieved. The OPC UA client in the developed gateway

reads these tag values directly from the server, as illustrated in Fig. 2.3-4,

where three timestamped sets of values are received. To evaluate OPC UA

interfacing efficiency, a widely used industrial OPC UA client (Softing) was

employed for result comparison within a close time frame (see Fig. 2.3-5).

Fig. 2.3-4 OPC UA client from the gateway accessing external OPC UA server (reading two tags).

60

Fig. 2.3-5 Softing OPC UA client accessing OPC UA server.

The second step was to approach the OPC UA publish-subscribe mechanism

according to the OPC Unified Architecture Part 14. The gateway concept was

maintained in [K-21], and other features of the two protocols were analyzed.

As a transport protocol, UDP is the chosen option for this case. Fig. 2.3-6

illustrates the configuration sequence for all components in the OPC UA

publish–subscribe pattern, including the steps preceding and following

information transmission and reception.

Fig. 2.3-6 OPC UA Publish-Subscribe configuration components.

In applying communication protocols with the publish–subscribe mechanism,

it was necessary to establish correlations between publishing and receiving

times for both protocols, together with a dependency procedure among the

gateway application components (see Fig. 2.3-7). The VSOME/IP notify-

subscribe pattern is an event‑driven mechanism enabling publisher–subscriber

communication through service discovery. Data exchange occurs via

communication endpoints, which define transport protocols and configuration

61

parameters such as port numbers, multicast addresses, and protocol details.

These parameters are stored in a JSON‑based VSOME/IP configuration file.

The notifying (publishing) process depends on the OPC UA subscribing

process: no transmission to the target client occurs until data arrives from the

OPC UA publisher. Once received, the VSOME/IP message is transmitted, and

the execution sequence returns to the OPC UA subscribe process within a time

shorter than the OPC UA publishing interval.

Fig. 2.3-7 Gateway application components dependency, OPC UA and VSOME/IP in the Real-Time Publish-

Subscribe context.

Although [K‑21] expands the gateway concept with several OPC UA

developments, the current implementation focuses on VSOME/IP for intra‑car

communication and OPC UA for infrastructure. The scenario addresses V2I

interfacing (e.g. Fig. 2.3-8). The semaphore is modeled through an OPC UA

server that stores vehicle‑relevant information. Three nodes hold the traffic

light colors and semaphore coordinates, enabling distinction among multiple

semaphores. The light color is updated by an OPC UA client running on the

same machine, using Linux timers to trigger changes. Concept validation

involves a third client that reads and displays server data. A detailed

representation of the three devices is provided in Fig. 2.3-9.

Fig. 2.3-8 Gateway case study general architecture.

62

Fig. 2.3-9 The three devices used in the case study architecture.

Reading from the OPC UA server and transmitting to the VSOME/IP client are

synchronized by a common timer, ensuring predictable cyclic behavior for the

SOME/IP notify–subscribe mechanism. In certain scenarios, however, server

reading may desynchronize from transmission. Data exchange was tested at

recurrences ranging from 1 ms to 10 s using a cyclic gateway timer controlling

both reading and forwarding processes. For all tested intervals, the VSOME/IP

client received correct data, though transmission latency increased with larger

data volumes transferred from the OPC UA server.

2.3.1.2 Multi-Protocol Gateway in an Automotive V2X context

Future interoperability challenges lie in interfacing diverse technologies and

architectures, each with distinct hardware resources and requirements. In

[K‑15], a combined automotive–IoT use case defined an architecture with

mixed SOME/IP, DDS, and eCAL nodes communicating via a gateway. From a

hardware perspective, automotive specific technologies guided the use of

microprocessors with native POSIX operating systems for most nodes.

Interaction with an IoT supervisor was simulated through a virtualized Linux

OS on a general‑purpose computer. SOME/IP and DDS nodes represent

intra‑car communication infrastructure aligned with AUTOSAR compliance,

while the gateway ensures data exchange between them and supports

interaction with the eCAL supervisor located separately. Each entity operates

on a distinct device, with transmitted data structured as cyclic heartbeat

events. The hardware architecture is illustrated in Fig. 2.3-10.

In addition to developing SOME/IP, DDS, and eCAL publishers and subscribers,

the gateway coordinates all participants to ensure efficient payload

distribution, accounting for desynchronizations caused by network instability

or operating system delays under real‑time constraints. Two gateway versions

were defined, depending on the heartbeat event provider. Each version

63

integrates middleware‑specific subcomponents aligned with assigned roles,

with every subcomponent transmitting and receiving data on separate

threads. This multithreaded design improves observation of recurrent

transmissions, delays, and connectivity issues. Data delivery remains efficient,

maximizing application responsiveness. The system architecture for both

versions is illustrated in Fig. 2.3-11.

Fig. 2.3-10 Hardware architecture of the multi-protocol gateway.

Fig. 2.3-11 System architecture showcasing both versions of the gateway.

The concept and development of the case studies enable clear observation of

procedure sequences within a SOA involving nodes of diverse technological

origin. Their interactions are synthesized in the proposed approach and

illustrated in Fig. 2.3-12. The concept’s reliability and efficiency were evaluated

through a data buffering mechanism and a signal generator for the distributed

heartbeat event. Both mechanisms provide clear insights into communication

infrastructure behavior under real‑time constraints and highlight the network’s

impact on message delivery at high recurrence rates. The developed buffering

process is detailed architecturally in Fig. 2.3-13.

Each node’s activity was tested individually, confirming high interoperability

even in complex scenarios. The multithreaded design proved efficient and

feasible across three publish–subscribe technologies, enabling automated

cyclic data delivery. Reliability and efficiency are further demonstrated

64

through the success rate results of the data buffering mechanism, presented

in Fig. 2.3-14.

Fig. 2.3-12 Procedures Sequence for all nodes of the architecture.

Fig. 2.3-13 Data buffering sequence.

The multi‑protocol gateway successfully interfaced SOME/IP, DDS, and eCAL

entities, meeting efficiency and reliability criteria while mapping the concept

to a V2X communication scenario. The defined architecture supported

interaction among three communication technologies across two case studies,

each based on distinct gateway versions with specific characteristics.

Compatibility among SOME/IP, DDS, and eCAL was confirmed, providing

65

perspectives across industrial domains and highlighting protocol‑specific

advantages and limitations, as illustrated in Table 2-6.

Fig. 2.3-14 Data buffering success rate results.

Table 2-6 Advantages and disadvantages related to SOME/IP, DDS and eCAL

Protocol Advantages Disadvantages

SOME/IP • AUTOSAR compliant

• Validated in multiple automotive use-cases

• Supported on both Classic and Adaptive

platforms

• Reliable and efficient

• Complex

configuration

process

DDS • AUTOSAR compliant

• Offers multiple mechanisms that assure

flexibility and scalability

• Supported on Adaptive platform

• Validated in multiple IoT applications and use-

cases

• Not established

in the automotive

domain, despite

being AUTOSAR

compliant

eCAL • Efficient, intuitive and easy to use for Ethernet

communication scenarios

• Easy configuration process

• High potential for industrial and automotive

related use-cases

• Not AUTOSAR

compliant for now

• Not very known

• Not applied to full

potential in explicit

technical areas

2.3.2 Zenoh Approach in the Automotive Sector

Modern vehicles rely on distributed controllers that communicate in real time

to ensure safety and efficiency. A key trend is the shift toward zonal

architectures, where local controllers manage specific functions and report to

an in‑vehicle server. This reduces cabling complexity and improves integration

66

of power and communication infrastructures, but also imposes stricter

requirements on middleware and software platforms [82]. Increasing

demands for real‑time monitoring and cloud connectivity further highlight the

need for efficient communication protocols, whose selection directly impacts

system performance under automotive real‑time constraints. Case‑study

validation has therefore become essential for assessing middleware

adaptability across diverse automotive scenarios.

The transition to software‑defined vehicles has accelerated the adoption of

modular, scalable, and connected embedded architectures [83]. Traditional

ECUs are being replaced by zonal controllers that manage sensors and

actuators for specific domains (e.g., body, chassis, powertrain) and report to

centralized servers [84-85]. Modern vehicles may integrate up to 150 ECUs

communicating via in‑vehicle networks [86]. In‑vehicle servers enable

advanced features such as external communication, OTA updates, and

enhanced safety [87]. Reliable protocols are crucial for V2I integration,

particularly in edge/cloud contexts. For example, [88] proposes a V2X enabled

system architecture for accident detection and real‑time data analysis.

Building on this motivation, two publish/subscribe protocols, Zenoh and DDS,

are compared for real‑time data delivery between in‑vehicle servers and the

cloud. Zenoh unifies data in motion, data at rest, and computation under a

single protocol, offering location transparency, geo‑distributed storage, and

query‑based access [89]. Its support for peer‑to‑peer, brokered, and routed

topologies provides flexibility for complex embedded deployments [90], while

its lightweight design avoids reliance on broker‑based architectures [91].

Studies confirm Zenoh’s suitability in automotive simulations [92], live

migration of edge applications [93], SDN coordination [94], autonomous

vehicle dataflows [95], and IoT surveillance [96]. Comparative analyses show

Zenoh achieving lower latency and higher throughput than DDS, MQTT, and

Kafka, particularly in constrained networks [97-99].

DDS, however, remains a benchmark protocol in industrial and embedded

systems. Its specification includes the Data‑Centric Publish‑Subscribe (DCPS)

layer and the optional Data Local Reconstruction Layer (DLRL), with 22

configurable QoS parameters enabling adaptability to diverse applications

[100]. DDS generally outperforms alternatives such as MQTT, ZeroMQ, and

AMQP in scenarios with large messages, strict real‑time requirements, or many

subscribers [100].

The primary aim of [K‑2] was to assess whether emerging frameworks such

as Zenoh can satisfy the stringent requirements of the automotive industry,

particularly regarding cloud data transmission under varying time constraints.

67

A Zenoh‑based communication architecture was implemented and

benchmarked against DDS in a representative scenario, serving as an initial

step toward designing adaptable, high‑performance automotive middleware.

The specific objectives of [K‑2] were to:

- Employ distributed embedded equipment typical of automotive systems,

including two zone controllers and an in‑vehicle server.

- Implement a Zenoh‑based prototype within a service‑oriented system,

a zonal control use case.

- Collect real‑time control and execution data from zone controllers via

the in‑vehicle server and forward it to the cloud using Zenoh and DDS

for comparison.

- Evaluate communication reliability at multiple publishing intervals

(1000 ms, 100 ms, 10 ms, 5 ms, 1 ms) to test Zenoh under increasing

speed and timing constraints.

- Highlight Zenoh’s strengths over DDS in terms of data consistency,

simplicity, and suitability for embedded automotive environments.

- Derive practical insights on Zenoh’s configuration and adaptation for

automotive‑grade communication, establishing a basis for future

improvements and extended testing.

2.3.2.1 Architectural Approach

The study focuses on the in‑vehicle server–cloud connection, enabling

real‑time data monitoring and analysis. Communication is implemented with

Zenoh (primary focus) and DDS, both tested under identical conditions. The

system comprises two microcontrollers (XMC4500, STM32L476RG)

functioning as zone‑controller ECUs and a Raspberry Pi 4 serving as the

in‑vehicle server (see the vehicle architecture in Fig. 2.3-15).

From a hardware perspective, two potentiometers are connected to the

XMC4500 zone controller: one adjusts direction (left/right), the other controls

speed (high/low). This microcontroller serves as the decision‑making node,

coordinating subsequent operations. The STM32L476RG zone controller acts

as the execution node, driving two stepper motors that simulate physical

responses to control signals; in real implementations, these could be replaced

by actuators or other components. The in‑vehicle server processes data

streams in real time, interfacing with the XMC4500 via two input channels and

acquiring state information from the STM32L476RG through four channels.

Beyond coordinating the controllers, the server enables V2X communication

and cloud integration. External communication is handled through Zenoh and

DDS, both publish/subscribe protocols with identical hardware.

68

Fig. 2.3-15 General architecture for the connection between the in-vehicle server and the cloud via ZENOH/DDS.

By aggregating data from control and execution nodes, the server provides a

real‑time system overview, forwarding information to the cloud for monitoring

and analysis. Testing under generic, non‑ideal infrastructure reflects

real‑world conditions, exposing potential limitations and edge‑case behaviors.

Communication flow is evaluated by comparing messages sent by the server

with those received by the cloud, revealing how performance degrades under

high‑frequency transmission while maintaining stable operation. This

assessment highlights the robustness and flexibility of the architecture under

strict timing and imperfect conditions.

2.3.2.2 Case-Study Development and Results

The testing process involved transmitting a predefined number of messages

from the Raspberry Pi to the cloud server at recurrence intervals of 1000 ms,

100 ms, 10 ms, 5 ms, and 1 ms. For each interval, received messages were

compared to those sent. Additional scenarios measured latency and jitter for

both protocols at every interval. Two fault‑injection tests were also conducted

to assess protocol resilience under degraded network conditions and to

analyze their impact on message delivery rates. Table 2-7 summarizes the key

implementation parameters of the system, including software versions,

operating system details, socket buffer configurations, and QoS settings.

Table 2-7 System configuration details

Parameter
Configuration

Protocol

version

zenoh-c 1.0.0-dev-208-gaab2487 (for Zenoh)

Fast-DDS 2.14.0 (Fast RTPS), Fast-CDR 2.2.1 (for DDS)

69

Operating

System

Raspbian GNU/Linux 12 (Bookworm)

Ubuntu 20.04.6 LTS

Kernel version 6.6.51+rpt-rpi-v8 (for Raspberry Pi)

5.15.0-139-generic (for Linux VM)

Socket buffer

sizes

rmem_max = 212992

wmem_max = 212992

QoS for DDS RELIABLE_RELIABILITY_QOS, TRANSIENT_LOCAL_DURABILITY_QOS (for

Publisher), VOLATILE_DURABILITY_QOS (for Subscriber)

Serialization Raw byte payload - for Zenoh, CDR (Common Data Representation) – for DDS

Both DDS and Zenoh implementations were developed. This section outlines

the Zenoh‑based approach. The communication layer was set to be Zenoh to

evaluate real‑time data transmission from the in‑vehicle server (Raspberry Pi)

to the cloud (Ubuntu VM), focusing on reliability and timing across varying

publication intervals. Zenoh’s topic‑based publish/subscribe mechanism

resembles DDS but differs in syntax and configuration. DDS defines topics via

IDL files, while Zenoh employs lightweight key expressions (e.g.

/key/topicForMonitoring) for dynamic data access. The data structure, an

unsigned long timestamp and a string message, remains unchanged but is

managed through Zenoh’s byte‑oriented APIs. Implementation relied on the

open‑source zenoh‑c library [101], with design references from official

documentation [102]. Fig. 2.3-16 shows topic‑level data flow and

communication structure between MyPublisher1 and MySubscriber1.

Fig. 2.3-16 Zenoh communication flow.

Although DDS and Zenoh both employ the publish/subscribe model on

identical hardware, their implementations differ markedly in configuration

complexity, code structure, and resource management. In DDS, topic

definition requires an IDL file describing data structures, compiled with tools

such as Fast DDS‑Gen to generate Publisher and Subscriber code. This

introduces dependencies, external tooling, and higher setup effort. DDS also

demands careful configuration of participants, domain IDs, data types,

DataWriters, and DataReaders. Zenoh, by contrast, offers a lightweight

approach. Topics are replaced with flexible key expressions, and data is

70

handled as byte buffers, leaving encoding/decoding to the application.

Functions such as z_put() and z_declare_subscriber() simplify publishing and

subscribing through callbacks, avoiding rigid participant and type registration.

Memory management is streamlined via owned and loaned data types

(z_owned_bytes_t, z_loaned_sample_t), reducing allocation overhead

compared to DDS’s typed system.

Integration is also easier: Zenoh relies on the zenoh‑c library and a simple

CMake setup, without IDL generation or multiple dependencies. Unlike DDS,

it requires no domain IDs or static participant setups, making replication and

modification straightforward. Both implementations used the same payload

(message + timestamp), but serialization differed. DDS applied the CDR

standard, ensuring type safety but adding overhead, while Zenoh transmitted

raw byte arrays, improving efficiency at high publishing frequencies. Zenoh

further simplified debugging and monitoring, with lightweight logic based on

key expressions, particularly advantageous on resource‑constrained devices

like the Raspberry Pi. While DDS remains robust for large‑scale, type‑safe

systems, Zenoh’s lightweight design proved better suited for real‑time

experimentation, prototyping, edge‑to‑cloud integration in this scenario.

Performance evaluation involved testing both protocols under 5 recurrence

intervals. Each 1‑minute test published thousands of messages, enabling

detailed statistical analysis of reliability under varying load conditions. The

results are summarized in Fig. 2.3-17 and Fig. 2.3-18.

Fig. 2.3-17 Zenoh monitoring statistics.

Fig. 2.3-18 DDS monitoring statistics.

At 100 ms recurrence, Zenoh achieved a 99.22% success rate, slightly

outperforming DDS at 98.24%. At 10 ms, the gap widened: Zenoh delivered

71

95.13%, while DDS reached 90.80%. These differences reflect the influence

of operating system scheduling and buffering in non‑real‑time environments.

At 5 ms, Zenoh maintained 91.79%, compared to DDS at 83.09%. At 1 ms,

DDS dropped to 57.12%, whereas Zenoh sustained 79.93%. Although both

protocols decline at high publishing rates, Zenoh’s resilience highlights its

suitability for high‑throughput, low‑latency edge computing scenarios.

A dedicated test scenario further measured end‑to‑end latency and jitter

across all intervals. Timestamped data enabled calculation of latency

(publication–reception difference) and jitter (variation from expected

intervals). Results, detailed in [K‑2], showed Zenoh outperforming DDS. For

example (see Fig. 2.3-20), at 10 ms recurrence, Zenoh achieved an average

latency of 149.69 ms and jitter of 0.92 ms, indicating stable scheduling under

high‑frequency transmissions. DDS, by contrast, recorded 163.23 ms latency

and 1.74 ms jitter, with greater fluctuation and reduced consistency.

Fig. 2.3-19 Zenoh-DDS comparison in fault-injection scenarios.

To evaluate behavior under non‑ideal conditions, two fault‑injection scenarios

were introduced: simulated packet loss and artificial network delay. These

reflect common issues in wireless embedded or congested in‑vehicle networks,

where strict timing can be disrupted. In the delay scenario, the subscriber

(Linux VM) was configured with 200 ms ± 50 ms delay, while the publisher

(Raspberry Pi) had 100 ms ± 20 ms delay. In the packet‑loss scenario, a 5%

loss rate was applied at the publisher’s interface to emulate random

transmission failures. Tests results are shown in Fig. 2.3-20.

72

In the artificial delay scenario, Zenoh maintained: 100% delivery at 1 s,

91.51% at 100 ms, and 84.59% at 10 ms. At higher frequencies, rates

declined to 80.84% (5 ms) and 52.75% (1 ms), yet Zenoh outperformed DDS.

DDS remained acceptable at 1 s (100%) and 100 ms (92.64%), but dropped

sharply to 47.73% at 10 ms, 32.39% at 5 ms, and 10.23% at 1 ms, indicating

limited suitability under added latency for high‑frequency transmissions. In

the packet‑loss scenario, Zenoh showed resilience, sustaining 100% at 1s,

98.20% at 100 ms, and 92.63% at 10 ms. Performance decreased to 90.42%

at 5 ms and 64.02% at 1 ms. DDS was more sensitive, with 95.18% at

1000 ms and 93.33% at 100 ms, but falling to 78.04% at 10 ms, 67.53% at

5 ms, and 32.97% at 1 ms.

Fig. 2.3-20 Zenoh-DDS comparison in fault-injection scenarios.

73

3 Approaching New Technologies and Solutions in Supervisory Control

and Data Acquisition

The current chapter consists of information from 6 scientific works [K-8], [K-

10], [K-22], [K-34], [K-35] [K-39], all WoS indexed papers, within 3

conference proceedings and 3 Q2 journals. The current chapter presents 3

different industrial paths as follows:

- The IGSS SCADA environment that is the only environment with object-

based licensing. The published papers approached two directions that

were stringent in the corresponding period, namely the optimal resource

allocation for IGSS [K-39], and very briefly the web access possibility

[K-34].

- The mobile Android SCADA concept that is independent of a main SCADA

environment, and that has OPC UA interfacing. Two papers were

published regarding the Android SCADA conceived and developed

solution. The first was based on OPC UA Client-Server mechanism and

a basic diagram approach [K-35], and the second highly improved

solution that was validated in the water industry and included modules

as Alarm&Events OPC UA service, tag structuring, elaborated design and

deployment services, etc. [K-10].

- The Node-RED based SCADA, relying on Node-RED open-source

environment. The Node-RED SCADA research resulted in two published

papers in Q2 journals, the first [K-21] as a generic solution, and the

second [K-8] more complex application that was validated in a building

management system real scenario.

3.1 IGSS related Advancements in Efficiency.

As the IGSS SCADA environment popularity was increasing due to the object-

based licensing, reporting module, early OPC interfacing, graphics and general

structuring, many industries used it in implementations both as first level and

as regional/central control centers.

Work [K‑39] proposed an optimization of IGSS SCADA resources for

integrating wastewater and drinking water pumping stations (WWPS/PS) into

higher‑level SCADA systems. Local automation solutions vary widely due to

differences in equipment, generations, tender specifications, and integrator

practices, limiting the possibility of modifications. Thus, maximizing SCADA

software capabilities is essential to reduce costs. In IGSS, licensing is

object‑based, with types such as analog, digital, table, and counter, each

defined by preconfigured atoms. Atoms differ by role (data type, I/O, alarm)

74

and may require templates for proper use. Traditionally, each IGSS object

corresponds to a physical device (e.g., sensor, pump, mixer) and its main

atom (e.g., ActualValue for analog, State for digital) represents the key

operational parameter. Alarming and reporting strategies are built around

these atoms, while additional atoms (e.g., HighAlarm, LowAlarm, AlarmIn)

extend functionality. To fully exploit alarming in higher‑level SCADA,

optimizations are needed since local PLCs and SCADA systems already

generate alarms in diverse formats, requiring template structures to access

more bits from available tags.

FreeValue atoms, designed to map analog values, are underutilized in classical

implementations, as they cannot trigger alarms directly or appear in standard

reports. For example, a device with three alarm states (overheating,

overcurrent, leakage) would require three IGSS objects, since FreeValue

atoms are excluded from standard reporting. This approach consumes

excessive resources, leading to larger license packages and higher costs when

scaled to higher‑level SCADA.

In the water sector, locally implemented automation solutions lack a unified

classification methodology for integration. The provided tags are central to

IGSS optimization, with three types identified in OPC DA/UA implementations:

- Simple tags: single values linked to local variables (e.g., pump state, level).

- Composed tags: sets of digital values represented by word variables, with

bits encoding operational states or faults.

- Multiplexed tags: values varying across sample times.

Based on these structures, WWPSs were classified into four categories:

- Type 1: simple and composed tags, including pump states/faults,

emergency signals, intrusion detection, and gas monitoring.

- Type 2: only simple tags.

- Type 3: simple and multiplexed tags, mainly analog.

- Type 4: simple and condensed composed tags, with pumps controlled via

frequency converters and detailed fault detection.

Similarly, PSs were grouped into three categories:

- Type 1: simple and composed tags, covering pump and valve states/faults.

- Type 2: simple and multiplexed tags.

- Type 3: only simple tags.

IGSS enables optimized implementations that reduce object requirements and

implicitly licensing costs. Resource optimization involves defining objects,

mapping atoms, configuring alarms, and reporting systems. These strategies

75

were aligned with operational needs of a water distribution company, ensuring

operators had access to relevant tags and SCADA functionalities available.

Extracting information from composed tags requires additional processing in

SCADA. Two approaches were proposed:

- Templates with Calculation Module: Template structures are configured

for Bit Map I/O (to expand states), Alarm In/Ack bits (to extend alarms), and

State/Commands (to define states). Alarms can be mapped to the State atom

of digital objects, with single‑bit display options and individual descriptors for

each state. The calculation module applies masks to identify or group bits,

mainly for alarm/state delimitation. This method was used for WWPS type 4,

where large digital data was in composed tags as pump/valve states/faults.

- VBA Implementations: VBA code identifies individual bits of composed

tags and assigns graphical descriptors in synoptic schemes. This generic

approach is effective across IGSS due to its modular design. Multiplexed tags

are better suited to VBA, as their values change per sampling period.

FreeValue atoms can be repurposed for counters, linked to alarms through

scripting, enabling alarms to be triggered. Alarm texts are created and

associated with objects, while conditions are managed via code. Visual

descriptors ensure diagram visualization, and alarm management interfaces

allow acknowledgment and clearing directly in SCADA diagrams.

For reporting, standard IGSS reports focus on base class values and lack

coverage for all atoms. Optimization requires archiving and reporting of every

atom. IGSS supports extended logging with MySQL or SQLite, solving storage

and access issues. Custom Excel‑based reports provide the only way to

represent diverse atom types, executed similarly to standard reports. The

mapping was designed to maximize resource utilization for each WWPS and

PS type. IGSS objects were defined with a high number of atoms, ensuring

proper correspondence across all IGSS modules. An illustrative example of

object mapping is provided in Fig. 3.1-1 for a type 2 PS.

After IGSS resource optimization, WWPS integration required an average of 7

objects per station, while PS integration used 11–13 objects. The optimization

magnitude varied by station type: classical SCADA implementations for WWPS

types 1–3 typically required 22–26 objects, and type 4 up to 49. For PSs,

classical solutions averaged 40 objects for type 1 and 51 for types 2–3.

All monitoring and control diagrams operated correctly, with examples shown

in Fig. 3.1-2 (type 1 WWPS) and 3.1-3 (type 2 PS). Core SCADA functions,

including alarming, reporting, logging, archiving, and mobile access, were also

verified as fully functional. Resource optimization was not fully maximized.

Objects were grouped with attention to alarm indications in diagrams,

76

integrated graphics, predefined measurement unit associations, and mobile

module functionality.

Fig. 3.1-1 PS type 2 object mapping example.

Fig. 3.1-2 WWPS type 1 IGSS diagram example using optimized resources (augmented in English).

IGSS provided limited web‑based solutions for remote monitoring, including

TeamViewer, LogMeIn, and an ActiveX browser client within the classical

client‑server setup. These approaches transferred the full graphical output of

the IGSS server, requiring high‑bandwidth networks. A dedicated web

monitoring/control module was not prioritized, though development was

possible via the ODBC server. Paper [K‑34] introduced WebNavIGSS, a

generalized web‑based solution that leveraged existing SCADA structures in

77

correlation with the Supervise module. Built around a webserver,

WebNavIGSS enabled real‑time data output from IGSS applications.

Fig. 3.1-3 PS type 2 IGSS diagram example using optimized resources (augmented with explanations in English).

The concept relied on the IGSS ODBC server, enabling SQL‑based access to

configuration and process data. Through this interface, key tables as ALM

(alarms), LOG (logs), and BCL (base class) were accessed. An SQL/MySQL

server acted as a bridge, importing non‑standard databases via ODBC and

converting them into standard formats usable by higher‑level applications. The

web application, controlled by the webserver, processed data from the

SQL/MySQL server and delivered real‑time outputs in a user‑friendly interface.

Data transfer between the SQL server and webserver employed PHP with

JavaScript, chosen over Java or C# for its speed, lower resource demands,

scalability, open‑source nature, and platform independence in dynamic web

development. The main software components of WebNavIGSS and the

proposed concept are shown in Fig. 3.1-4.

For monitoring, the webserver retrieved live data from IGSS databases—

audittraildb (audit), logdb (logs), mntdb (maintenance), and hdmdb

(historical). Modifying atom values via WebNavIGSS required bidirectional

communication between the webserver, SQL server, and IGSS ODBC server.

A Model‑View‑Controller (MVC) architecture was adopted, enabling modular

separation of application areas and independent implementation, which

proved advantageous in the IGSS context. The WebNavIGSS application is

structured into modules, as shown in Fig. 3.1-5, each with defined tasks and

interconnections to limit redesign or replacement impact.

78

Fig. 3.1-4 Main software components of the proposed concept.

The Core Application (CoreApp) module functions as the operating system of

the application, coordinating and integrating all modules. It employs

priority‑based task management to ensure user‑critical actions (e.g.,

responding to queries) are processed before secondary tasks such as database

imports. CoreApp also includes initialization sequences for all modules, error

handling to diagnose faults and determine corrective paths, and exit routines

to preserve data integrity during shutdown. The finite state machine governing

CoreApp operation is shown in Fig. 3.1-6. Table 3-1 details the events,

conditions and actions associated to an id number within the state machine.

The RealTimeHandler manages user communication and synchronizes values

with IGSS SCADA using both asynchronous and synchronous tasks. Browser

data updates occur every 100 ms, a rate imperceptible to human eye.

Fig. 3.1-5 WebNavIGSS application modules.

79

Fig. 3.1-6 Core Application module FSM.

Table 3-1 CoreApp FSM details

Id Events (E) Conditions (C) Actions (A)

0 CoreApp not connected
Connection with other modules
established? No.

CoreApp remains in same state

1
CoreApp initialized with other
modules

All modules initialized? Yes. CoreApp moves to Run state

2
CoreApp periodically checks
application status

An error occurred? No. CoreApp remains in same state

3
CoreApp received a request to
exit the browser

A request was received to close the
session? Yes.

CoreApp moves to Exit state

4
An error occurs while CoreApp
is in run mode

An error was reported? Yes. CoreApp moves to Error state

5
CoreApp is in error state and
diagnosis is initiated.

Error diagnosis ready? No. CoreApp remains in same state

6
CoreApp could not solve the
problem.

CoreApp can solve the problem? No. CoreApp moves to Exit state

7
CoreApp can solve the problem
by reinitializing the module.

CoreApp can solve the problem? Yes.
CoreApp moves to Init state to
initialize all modules

The IGSSDataHandler manages data exchange with IGSS, storing information

in SQL/MySQL servers, handling databases, and executing queries. A

ServerConnection ensures a unique, active SQL session, directing the

DatabaseConnection module. Databases contain tables processed through

implemented SQL and query scripts, including customized user views.

In the WebNavIGSS GUI, IGSS symbols, graphical descriptors of defined

objects and their states, are imported via the SymbolHandler module. User

management structures are also implemented through IGSSDataHandler,

linking SCADA credentials with the web application.

A small auditing historian was implemented to record user activity within

WebNavIGSS. In case of connection errors, the IGSSDataHandler attempts

reconnection for 5 min. at 100 ms intervals. If unsuccessful, it halts the

procedure and reports an error to CoreApp. The UserInterface module

translates actions into graphical structures accessible via the webserver, using

80

HTML and CSS. To ensure synchronization with CoreApp, communications are

uniquely delimited, isolating the module from faults in others. The

MonitorHandler establishes software connections for monitoring, similar to

IGSS’s Supervise module but with simplified data views. Users can filter

information by area, diagram, object name, alarm status, or atom conditions,

with search functions available. The ControlHandler manages control

functionality, enabling modification of atom values within objects.

WebNavIGSS was validated both in laboratory conditions and in a real

deployment at a regional IGSS SCADA control center of a water distribution

company. The IGSS application encompassed water and wastewater facilities.

Two screenshots illustrate the web navigator in operation, supplemented with

English annotations. Fig. 3.1-7 illustrates active IGSS alarms in WebNavIGSS,

highlighting two WWPS where levels exceeded the high limit. Fig. 3.1-8

presents a filtered view from WWTP objects, two nitrogen output values, one

oxygen value from the biological reactor, and the output flow.

Fig. 3.1-7 WebNavIGSS screenshot of some active alarms.

Fig. 3.1-8 WebNavIGSS screenshot of some live values.

3.2 Android and OPC UA based Mobile SCADA Solution.

Accessing SCADA applications from mobile devices became a necessity in

several industries. Most of the mobile solutions are based on traditional SCADA

environments extensions, needing SCADA server applications in a control

room. Independent SCADA solution was necessary, that is able to make use

of Industry 4.0 improvements in interfacing and to be based on OPC UA

protocol. First, in [K-35], a basic Android SCADA was conceived and developed

solution, based on OPC UA Client-Server mechanism. The application was

validated through a case study at a water treatment facility comprising a

treatment plant, distant wells, pumping stations, reservoirs, and a water

tower. Local automation/SCADA involved two separate solutions from different

manufacturers under distinct contracts, with OPC serving as the interface. The

81

treatment plant control room operated on two redundant SCADA servers using

WinCC 7.2 with Connectivity packs exposing OPC UA servers.

The study focused on facility operation and maintenance, while the second

contractor’s performance was observed during implementation of wells and

distribution. An Android UA client could have reduced implementation time

and costs by addressing inefficiencies such as personnel confinement to

monitoring sites, delays from failed tests, limited process visibility, and

restricted SCADA control room access. Additionally, the treatment plant

contractor incurred significant effort traveling between the control room and

equipment during testing.

The following figures display the initial Android SCADA version tested in the

case study. Fig. 3.2-1 depicts the OPC UA connection and a folder browsing.

Fig. 3.2-2 presents a tag browsing and selection, respectively a subscription

generation. In the subscription module, operators view basic variable

information, including the UA server node identifier (ns, s) and tag value. As

shown in Fig. 3.2-3, variables can be selected and customized via a popup

window, allowing assignment of a title (e.g., output flow, well level, pump

state, pressure, current, valve opening, with units) and an image for easier

device identification. An updatable picture list was introduced for common

equipment in the water facility. The subscription interface displays variables

in full setup. For example, a WTP flow with a value of 34.53111 m³/h.

Several protection structures were implemented to guide operators when

incorrect commands are issued (e.g., invalid subscriptions) and to maintain

continuous system status awareness. The objective was to create a

user‑friendly application requiring minimal operator expertise.

Fig. 3.2-1 Connecting to the OPC UA Server and folder browsing.

Following the initial small‑scale application, research advanced toward a more

complex prototype system for the water industry, as reported in [K‑10].

Starting the application initiates a new Linux process with a Main thread

82

responsible for all user interface (UI) interactions. In the first version, this

thread also managed OPC UA server connections. However, newer SDKs

prohibit networking on the main thread, generating a

NetworkOnMainThreadException. The updated application therefore

integrated multiple Background threads to handle network operations,

including OPC UA server connections, Node ID subscriptions, and client

disconnections, as illustrated in Fig. 3.2-4.

Fig. 3.2-2 Variable browsing and initiating a subscription.

Fig. 3.2-3 Variable browsing and initiating a subscription.

The general architecture of the application is shown in Fig. 3.2-5, comprising

two Android Activities: Connect Activity and After Connect Activity. In the

connection module, users can initiate new OPC UA sessions, discover server

endpoints via URI, or reconnect to existing sessions. All operations run

asynchronously, separate from the main UI thread. The Discover Endpoints

feature provides a list of EndpointDescription objects containing connection

details such as URL, security mode, policy, and certificate. Selecting an

endpoint creates a new client, and successful connections are stored with the

session name in SharedPreferences. On reconnection, the stored

EndpointDescription is retrieved, and all diagrams, objects, and subscriptions

are automatically rebuilt for the client.

83

Fig. 3.2-4 Main processes of the application.

Fig. 3.2-5 General architecture of the application

Later, the MQTT protocol was also added to the application, as alternative to

OPC UA. Fig. 3.2-6 depicts the choice to be taken at the initial connection.

Three object types were defined in the application: digital, analog, and alarm.

Digital and analog objects serve as structured items for storing and

84

representing data, and can be used to populate diagrams. Each may be

enhanced with representative images, titles, and a NodeId linking the object

to an OPC UA server variable. The custom object types with distinct

characteristics are illustrated in Fig. 3.2-7.

Fig. 3.2-6 Choosing the communication protocol OPC UA - MQTT

Fig. 3.2-7 Software architecture of creating a Digital or Analog Object and Alarms.

85

Reliable OPC UA client–server communication was ensured through a

reconnection strategy, improved error handling, and optimized disconnection

processes. A listener monitors server status, triggering automatic

reconnection when issues occur. Disconnection is managed both manually via

the UI and automatically when the application closes, preventing crashes and

time‑outs caused by limited concurrent server connections. Upon successful

connection, the second activity serves as the application hub, containing a

menu with Server Status, Browse, Subscribed Objects, Design and Deploy,

and Disconnect Fragments. Navigation between fragments is handled by a

dedicated component. The Design and Deploy Fragment is central: in Design

mode, users can create, configure, and edit digital/analog objects and alarms

through three dialogs (object creation, NodeId selection, alarm setup). In

Deploy mode, a Foreground Service subscribes asynchronously to all NodeIds,

ensuring data updates and alarm notifications remain visible even when the

app is minimized. Data persistence uses SharedPreferences for sessions and

simple objects, with Gson converting complex objects to JSON strings for

storage and retrieval. Alarm objects, linked to NodeIds, support the Alarms

and Events (A&E) service. Conditions trigger alarms, changing object color to

red and logging events with time and date. With servers supporting the Alarm

and Condition (A&C) service, alarms are transmitted separately from data

access, enabling acknowledgment across the system and consistent

messaging for all participants.

Both monitoring and control are implemented. Control tasks use asynchronous

operations: each ImageView registers context menus, showing edit options in

Design mode and control options in Deploy mode (see Fig. 3.2-8). Three

control cases were developed:

- Digital object with numerical ON value: digitalObject.isValueOn() verifies

configuration, and digitalObject.getOnValue() retrieves the ON state. The

OPC UA Node data type is checked to avoid Bad_TypeMismatch.

- Digital object with bitwise ON state: digitalObject.isBitwiseON() confirms

configuration, and digitalObject.getOnBit() retrieves the bit position. Both

ON and OFF values can be assigned to a bit.

- Analog object: a dialog prompts the user to enter a new value in an EditText

field. The linked Node data type is validated, and the value is written using

client.writeAttribute for the NodeId.

Adding a new object to the layout involves three dialogs. The first, opened via

the + button, is the Configure Object dialog where object attributes are

defined. The primary attribute is the type (Analog or Digital). Analog objects

require images for Symbol and Alarm states, while digital objects require

images for ON, OFF, and Alarm states. For testing, an analog object named

86

“P2_Putere”, representing a pump power meter, was created with Symbol and

Alarm images as shown in Fig. 3.2-9.

Fig. 3.2-8 Control menu displayed in Deploy mode

The second dialog links the object to its corresponding NodeId from the OPC

UA Address Space. Node selection is performed through a browsing dialog,

where the operator taps and holds the desired node, as shown in Fig. 3.2-10.

Fig. 3.2-9 Configuring a new analog object named

“P2_Putere”

Fig. 3.2-10 Selecting the NodeId for the analog object

The final step involves adding an alarm. In the previous example, an Alarm

object was created using the same NodeId as the analog object, with a unique

name, message, mode, and setpoint. (Fig. 3.2-11). Alarm modes include:

equal, not equal, above setpoint, below setpoint, between setpoints, outside

setpoints, ON value, or bit state. Depending on the mode, one or two setpoints

are required. In the example, the mode is above setpoint; thus, if the server

value exceeds the setpoint “3,” an alarm is triggered.

Switching to Deploy mode triggers the Foreground Service. An icon appears

in the device status bar, and a notification is shown in the drawer (Fig. 3.2-

12), initiating monitoring. The alarm is appearing as notification (see Fig. 3.2-

13), respectively marked on the object within the view (Fig. 3.2-14).

87

Fig. 3.2-11 Adding an alarm to the analog object

Fig. 3.2-12 Notification when the server

starts running

Fig. 3.2-13 Alarm notification for object “P2_Putere” when value

is over set-point 3

During Deploy mode, triggered alarms are displayed in an alarm list.

Activating the Alarm List button opens a DialogFragment with a scrollable

TableLayout. Each alarm is represented by a new row containing its title,

NodeId, message, value, trigger time, and a red alarm image for

acknowledgement, as shown in Fig. 3.2-15. The user can acknowledge an

alarm by tapping on it and confirming the action. This action changes the

acknowledge alarm image color. The list is limited to 50 alarms that are

chronologically kept within the list to avoid saving unnecessary data which can

diminish performance.

For detailed time‑based monitoring, trend graphs were implemented using

SurfaceView and Canvas. Users can select multiple NodeIds for simultaneous

monitoring, and graphs can be scaled within defined limits. As an example,

the evolution of pump speed (rotations/min) is graphically illustrated in

Fig.3.2-16 using a trend graph.

88

 Fig. 3.2-14 Value above set-point
3, showing an alarm within the

diagram.

Fig. 3.2-15 A list of alarms triggered for analog object “P2_Putere”..

Fig. 3.2-16 Tendency graph for a node with values from 2700 to 2800.

3.3 Approaching Node-RED SCADA while Acknowledging Industry 5.0 Requirements.

The industry is initiating more-and-more transition towards solutions that are

assuring as much as possible the three Industry 5.0 pillars. In this sense the

89

essence is to be able to adapt and to be extended rapidly and efficiently to

any requirement of the operator, to assure proper and quick maintenance, to

shorten and fasten supply lines. One direction would require to initiate more

basic level development within open-source environments. However, IIoT and

digital transformation focus, popularity and new technologies would be

essential. Therefore, another SCADA approach that was undertaken is

referring open-source environment based SCADA. The Node-RED environment

was in the center of this approach, as being more and more present in

industrial environments and satisfying all criteria needed to successfully

deploy and maintain a new type of SCADA system.

The steps towards researching and developing a Node-RED based SCADA were

to initially obtain a generic solution that cover basic SCADA modules and then

to refine, improve, and grow the solution for industrial applicability. Therefore,

the current section exposes parts of studies from [K-22] and [K-8]

OPC UA represents a modern application-layer protocol designed to support

increasingly demanding requirements for high-volume and high-speed

industrial data exchange. In order to complement its capabilities, additional

transport-level protocols are being adopted, such as UDP and more recent

solutions within the OSI model, including Message Queuing Telemetry

Transport (MQTT). Both MQTT and AMQP provide efficient mechanisms for

cloud integration, relying on a robust publish–subscribe paradigm that is well-

suited for handling large-scale data streams. Current research highlights

MQTT as a central focus of academic inquiry, while industrial practice has also

embraced it, with implementations appearing in PLCs. SCADA systems are

gradually adopting MQTT as well. For instance, Ignition, one of the most

competitive SCADA platforms, offers MQTT functionality through third-party

modules, with Sparkplug serving as the associated application protocol.

Despite its potential, Sparkplug has yet to achieve widespread adoption,

particularly within European markets.

Traditional SCADA systems, however, continue to evolve at a slower pace.

Their high cost and the necessity of maintaining backward compatibility with

earlier versions pose significant challenges. Moreover, many SCADA

environments historically relied on domain-specific legacy protocols, such as

IEC 60870-5-104 in the electrical sector. Initially, the primary challenge for

SCADA was the integration of heterogeneous data sources, especially

interfacing with lower-level devices like PLCs. This led to the development of

numerous proprietary drivers, which often distinguished one SCADA solution

from another. With the emergence of centralized OPC and later OPC UA

servers, SCADA platforms gradually transitioned to these standards. The

introduction of OPC clients further accelerated adoption, enabling

90

interoperability across higher system layers. Some environments, such as

Citect, were designed natively around OPC, while others like Ignition, which

emphasizes customization and software-centric development, support

OPC/OPC UA alongside legacy protocols including Modbus TCP, S7, and

Ethernet/IP. Nevertheless, only a limited number of SCADA systems currently

integrate MQTT as a native communication option.

Beyond communication, SCADA platforms encompass a wide range of

functionalities, including data visualization, graphical interface development,

logging, archiving, alarm management, reporting, and mobile access.

Conventional SCADA systems typically represent data through tag-based or

graphical models. To reduce development and maintenance costs, alternative

paradigms have been introduced. For example, the IGSS employs an object-

oriented methodology, wherein physical assets are represented by digital

objects composed of atomic elements linked to PLC tags. Even licensing in

IGSS is object-based. Other object-oriented approaches define core entities

with attributes and methods, deferring graphical representation to later

stages, thereby enhancing development efficiency.

Data storage and archiving are increasingly supported by SQL-based

databases, with platforms such as WinCC, Ignition, and Indusoft adopting this

model. IGSS has also transitioned to SQLite as its default database engine.

Mobile capabilities are another area of expansion, ranging from basic remote

desktop modules to dedicated mobile applications (e.g. IGSS) and advanced

frameworks such as Ignition Perspective, which enable custom mobile

solutions. Modern SCADA development emphasizes rapid, concurrent

deployment, often leveraging web technologies to deliver flexible and scalable

solutions, as seen in Indusoft and Ignition.

The [K-22] study introduced a cost-effective, modular, platform-independent

SCADA architecture built upon the Node-RED IoT framework. The proposed

system establishes an IoT network that facilitates seamless communication

between physical and digital components while implementing essential SCADA

functionalities for process monitoring. The solution integrates Modbus TCP and

MQTT protocols, employs InfluxDB for time-series data management, and

utilizes Grafana to enhance visualization and database interaction.

Experimental validation demonstrates the effectiveness of this approach,

confirming its suitability for efficient and customizable process supervision.

Node-RED incorporates a wide range of communication protocols spanning

multiple layers of the OSI model. Among these, the OPC UA has long been

established, continuously evolving to expand its interoperability and functional

scope. Within this framework, OPC UA clients enable direct connectivity to

91

field devices for data acquisition, while OPC UA servers facilitate integration

at higher system levels or enable peer-to-peer communication by exposing

structured datasets. Sparkplug B has been introduced into Node-RED,

providing standardized connectivity between Sparkplug-enabled devices

through the MQTT transport protocol. MQTT itself has emerged as a universal

messaging protocol, valued for its simplicity, lightweight implementation, and

minimal resource requirements. Node-RED natively supports MQTT through

dedicated nodes, enabling integration with brokers such as Mosquitto. In

parallel, AMQP nodes are also available, complementing MQTT in providing

reliable cloud-oriented communication.

Beyond these, Node-RED offers connectivity to major cloud ecosystems,

including Microsoft Azure and Amazon Web Services (AWS). Furthermore,

Node-RED has developed its own hosted cloud platform, Front End Node-RED

(FRED), which provides a managed environment for deploying IoT solutions.

The adoption of cloud services in IoT architectures is critical for centralized

data management, ensuring secure, efficient, rapid delivery of information.

In IoT platforms, historical data archiving is essential for analytics, requiring

robust storage methodologies within system infrastructures. Selecting an

appropriate database is critical, with factors such as scalability, portability,

efficiency in writing and accessing data, compression, security, and

implementation costs playing decisive roles. Node-RED supports integration

with multiple databases, including MSSQL, MySQL, SQLite, PostgreSQL, and

Oracle, as well as modern time-series solutions like InfluxDB. While relational

SQL databases transformation remain viable, time-series systems provide

performance for rapid logging and retrieval of continuously generated data.

Due to its modular and customizable design, Node-RED enables SCADA-

specific functions such as logging, archiving, and reporting, even at the

integrator level. Visualization tools like Grafana further enhance database

manipulation and graphical representation, supporting the creation of

dashboards that emulate SCADA monitoring. Compared to traditional SCADA

systems, Node-RED offers broader connectivity, flexible scripting, and

advanced data analysis capabilities, yielding a favorable cost–benefit balance.

Its flow-based architecture, exportable as JSON files, ensures high

technological readiness and facilitates straightforward identification of tags,

objects, and data streams. Consequently, Node-RED demonstrates significant

potential for IoT/IIoT applications and is increasingly positioned as a

competitive environment for next-generation SCADA solutions.

The architecture of the case-study SCADA system implemented in Node-RED

is illustrated in Fig. 3.3-1. The communication protocol selected for PLC

communication was Modbus TCP, though other protocols could be applied. In

92

this configuration, data generated by a simulated PLC is acquired and

processed within Node-RED, which inserts the resulting time-series values into

the designated database. Grafana subsequently performs scheduled queries

on this data source, enabling visualization of key metrics. The resulting

dashboard panels are integrated into the Node-RED interface, providing a

unified monitoring environment. An MQTT broker manages message

distribution, ensuring that all published data are delivered to subscribed

clients. Finally, two client applications were employed to validate

communication across the network.

Fig. 3.3-1 The architecture of the proposed case study.

To ensure proper data storage within measurements, a dictionary must be

defined using JavaScript. Specific values can then be accessed or published to

designated topics by declaring global variables through the global.set()

function, while retrieval is enabled via global.get(), callable from any flow or

sub-flow node. Following data processing, the formatted information is

inserted into the InfluxDB time-series database (see Fig. 3.3-2).

The second stage in completing the main SCADA component involves

embedding Grafana panels into a unified Node-RED dashboard (see Fig. 3.3-

3). This integration is achieved through the layout tab’s grouping system,

where each panel is assigned a tab and positioned at the desired interface

location. Embedding is performed via a function node, whose payload specifies

the Grafana related characteristics. This configuration ensures seamless

visualization within a single monitoring environment.

93

The sub-flows are integrated into the main application flow, which defines the

overall system logic. The dashboard elements, comprising a slider node, two

switch nodes, and a non-editable text node, were configured and grouped

within the interface to link graphical components with the underlying logic. To

enhance monitoring, an SVG node was employed, enabling animated

visualization of motor states through customized properties. Message

payloads were structured in a function node to update selectors with specific

attributes, such as the fill property, ensuring accurate graphical

representation. User inputs are processed by function nodes, which publish

results to an MQTT topic. Finally, the processed messages are directed to a

“Modbus-Write” node, allowing modification of values at designated holding

register addresses, thereby completing the control of the system.

Fig. 3.3-2 Sub-flow for reading, processing and inserting data into the database.

Fig. 3.3-3 Sub-flow for importing Grafana panels.

The solution was tested and validated using various scenarios, using standard

computer and mobile device as a SCADA running entity. A screenshot

depicting dashboard status as a result from a tested scenario is presented in

Fig. 3.3-4. As observed, all SCADA related modules are functioning properly.

Following [K-22], the Node-RED SCADA solution was extended and applied in

a real industrial scenario, within the building management system of an

automotive company. Research contracts were improving the solution and the

final application is running for several years now in the industrial environment.

94

Fig. 3.3-4 One status of the SCADA dashboard in a tested scenario.

Work [K-8] presents some main outcomes of the research activity, the Node-

RED SCADA solution being a main contributor. The application was tested for

correct data acquisition, data representation, complete alarming and notifying

module, reporting module, and running on premise and on the cloud. Figures

3.3-5, 3.3-6, 3.3-7 are presenting screenshots regarding the functioning of

some modules.

Fig. 3.3-5 Grafana stat view for event-based sensor data.

Fig. 3.3-6 Grafana stat view for Datalogger acquired data.

The research resulted in a fully operational solution capable of integrating

diverse legacy systems commonly used in industry. Visual outputs confirmed

both the accuracy of acquired data and the effectiveness of the acquisition

process. Statistical dashboards were configured to display final values stored

95

in the designated database tables. Upon successful insertion, the data are

retrieved from the database and presented on the dashboard through the

appropriate graphical components, ensuring reliable monitoring and validation

of system performance. Fig. 3.3-8 presents some example of processing logic

usage of CPU and Memory.

Fig. 3.3-7 Grafana trend chart.

Fig. 3.3-8 Example of Processing logic usage of CPU and Memory.

96

4 Increasing Efficiency in an IIoT Guided Industrial Evolution

The current chapter consists of information from 11 scientific works [K-7], [K-

12], [K-14], [K-17], [K-20], [K-23], [K-24], [K-28], [K-32], [K-33], [K-36].

The goal was to increase efficiency in the industry, following IIoT and Industry

4.0 principles. The research works had in mind Industry 4.0 targets, but some

influenced positively future Industry 5.0 pillars through various results and

conceptual approaches (e.g. decentralized and local processing, energy

consumption reduction, wastewater overflow prevention, non-invasive control

augmentation to improve and extend the lifetime of systems, defect and

quality indicator forecasting, human-centric applications both in water and

automotive scenarios). The industrial domains of application are: the water

sector and the automotive manufacturing.

Industrial sectors differ in their capacity for reconfiguration. While industries

such as automotive manufacturing frequently adapt production lines to client

demands, the water sector remains resistant to invasive changes, relying

heavily on legacy systems. This results in heterogeneous, chronologically

dispersed solutions that require efficiency improvements through non‑invasive

and sustainable strategies. Consequently, water treatment and distribution

facilities face persistent challenges including high energy use, equipment

failures, excessive chemical consumption, maintenance demands, and

variable source quality [103]. Many technical implementations, once viable,

are now outdated, requiring renewed academic and industrial efforts to unlock

the sector’s potential for human health and environmental protection [104].

Under Industry 4.0, competition has focused on system connectivity and

interoperability [105], as well as safeguarding critical infrastructure through

automation, SCADA, and communication technologies [106]. However,

research must be industry‑oriented, as many studies remain theoretical

without practical applicability. Industry 4.0 connectivity has introduced the

concept of data accumulation, typically implemented via historian applications

[107]. Current approaches emphasize traditional storage and reporting rather

than process orientation. For example, [108] adapts historian solutions for the

electrical domain, extending support for IEC 61850. In the water sector,

decentralized historian solutions are needed [109]. Despite large volumes of

collected data, much remains unused, highlighting the need for proactive

historian applications, advanced analytics, and optimization strategies.

Autonomous optimization loops require model‑based analysis, decision

procedures, and non‑invasive control. Studies such as [113] demonstrate the

potential of data‑driven analysis of latent alarms and events in IIoT contexts.

97

Emerging edge/fog computing concepts further support Industry 4.0 by

enabling local automation. Research in [114] evaluates middleware platforms

for IoT solutions in fog and cloud configurations, applied to irrigation

scenarios. Fog computing is also proposed in [115, 116] and extended to

hybrid wind farm control [117]. Conversely, cloud computing remains

advantageous for large‑scale distributed processes requiring less granular

optimization, such as supply chain integration [118].

As drinking water facilities increasingly adopt Industry 4.0, the integration of

physical and digital systems introduces challenges such as high energy

consumption, maintenance demands, source quality variations [119], pump

failures [120], and excessive chemical use [121]. Studies address these issues

from multiple perspectives. For example, [122] analyzes energy requirements

and carbon footprint in desalination for swimming pools, though without

optimization steps. Improvements are proposed in [123] through real‑time

SCADA monitoring to reduce water loss, while [124] develops a non‑linear

multi‑year model for sustainable groundwater distribution in irrigation. Water

demand calibration impacts are studied in [125]. Optimization of turbidity

treatment using natural coagulants is presented in [126], and water quality

monitoring strategies are discussed in [127]. The influence of climate change

on drinking water systems is highlighted in [128]. Optimization efforts often

focus on costs, linked to chemical usage, energy, and maintenance. [129]

examines proportional effects of chemical consumption on quality indicators,

while [130] considers costs at a general level. Automation strategies also

reduce costs, as shown in [131] with frequency‑converter pumps in small

facilities. A broader cost perception study of distribution networks is presented

in [132]. Further research explores reservoir operation optimization to

minimize pollution losses [133], energy reduction in desalination [134], and

raw source water impacts on treatment [135]. Long‑term degradation of water

sources is documented in [136], emphasizing the need for systematic data

collection and learning. Predictive approaches include turbidity forecasting

with early warning systems [137], anomaly detection in distribution via

supervised learning [138], SCADA‑based anomaly identification [139], and

missing data compensation [140]. Integration of weather data [141]

demonstrates how IIoT concepts, particularly proactive historian applications,

can enhance efficiency in water systems.

In wastewater treatment, Sandu et al. [142] conducted a numerical study

introducing wall structures to prevent low‑velocity flows that promote

sedimentation and disrupt treatment. Similarly, [143] proposed predictive

control schemes to enhance stability and efficiency. Neural networks are

widely applied in industry for improved decision‑making with accumulated

98

data. Examples include defect detection via deep learning [144], CNNs for

sheet‑metal fixture layouts [145], and IIoT deep learning syntheses [146].

Prediction of faults and uncertainties is increasingly important, with LSTM

recurrent NN models used for data‑driven approaches. For instance, [147]

predicts faults by generating expected images one second ahead, while [148]

forecasts production progress. Other solution includes probabilistic

temperature prediction in additive manufacturing [149]. Research must

remain process and data driven, grounded in real industrial systems.

Optimized LSTM strategies for chemical fault diagnosis [150] and short‑term

voltage stability assessment [151] demonstrate superior performance

compared to traditional methods, though further industrial deployment is

needed. In the water domain, improvements are largely data‑driven and

NN‑based. CNNs are applied to pipe leakage detection [152], CNN/LSTM

combinations to underground drainage sensing [153], and Raspberry Pi‑based

CNN/LSTM systems to mechanical water meters for leakage detection [154].

Prediction studies remain limited: [155] forecasts water quality extremes but

lacks local adaptability; [156] addresses pipe failure prediction without clear

timeframe applicability; and [157] focuses on company needs but fails to

achieve the required prediction horizon for maintenance/control adjustments.

Predictive maintenance [158] represents a key transformation area under

Industry 4.0, reducing downtime, operating costs, and enhancing efficiency,

productivity, and profitability [159]. Implemented solutions, such as [160],

already demonstrate significant improvements in manufacturing.

Furthermore, work [K‑14] details predictive maintenance by forecasting

cylinder defects in the automotive industry.

Sections 4.1 is presenting the initial phase development of the low-cost

decentralized historian from [K-33].

Section 4.2 introduces the concept of a Proactive historian and details the

evolution to obtain a non-invasive automatic solution that reduces energy

consumption in the drinking water facilities. Also, the progress towards long-

term testing of the solution is presented. The information is from papers [K-

28], [K-23], [K-17], [K-12].

Section 4.3 presents the solution from [K-7], based on an LSTM decentralized

edge AI technique within the proactive historian that was able to predict faults

and indicator values in the water sector.

Section 4.4 extends the non-invasive analysis and correction idea to

wastewater treatment plants (WWTP) with the information from [K-36], where

an energy reduction technique is developed, and the information from [K-24]

where weather-based prediction is included in the historian.

99

Section 4.5 details the findings from [K-32], where improvements were

realized in the functioning of groups of WWPSa using a non-invasive solution

developed within a higher-level wrapping structure.

Section 4.6 presents an efficiency increase solution in the automotive

manufacturing from [K-20], where image processing hardware-software

structure was researched to detect ECU defects at the EoL production.

4.1 Decentralized Low-Cost Proactive Historian.

The section describes briefly the lightweight and low-cost historian developed

in a first phase in [K-33] that is based on OPC UA interfacing, but extensible

also for other protocols. A platform‑independent historian was developed for

edge deployment, suitable even for automation panel integration without

SCADA supervision. The Java‑based application embeds the Node‑Red

platform for SCADA interfacing and uses a SQLite database. Designed for high

TRL, it supports long‑term communication monitoring and reconfiguration,

enabling rapid applicability in the water industry. It also serves as a foundation

for further research on automatic stored‑data analysis, generating conclusions

for diverse water objectives and transmitting them in appropriate formats for

control adjustments or alarms. Commercial SCADA software typically offers

limited logging/archiving functions, with data manipulation constrained by

licensing, file formats, or restricted export options. Historian software is often

sold separately at high cost. Local SCADA control rooms, covering WTPs,

WWTPs, chlorination stations, pumping stations, wells, reservoirs, and

measurement points, hold the largest data volumes. Effective local historians

must balance interoperability with cost‑benefit considerations.

Practical experience shows that only ~5% of SCADA control rooms use

separate historians, mostly in large treatment facilities. These are expensive,

platform‑dependent, LAN‑connected products, rarely used by operators

beyond data export or archiving. Low‑competency operators often struggle

with complex interfaces, while skilled operators use them sparingly. Downtime

of SCADA systems frequently disables historians until external maintenance

intervenes, as their structure is tightly coupled to vendor software.

At the automation panel level (WWPSs, wells, pumping stations, chlorination

stations, small WTPs), historians are absent, with only short‑term HMI logging

available. Thus, a low‑cost, lightweight historian is needed, adapted for rapid

panel integration and accessible to operators with limited IT skills.

At the central/regional SCADA level, historians are typically connected to

SCADA servers or, where permitted, to SCADA gateways. Operators use them

100

mainly for archiving, exporting, and offline analysis, with historical data later

supporting higher‑level processing. Several issues arise at this level:

- Data collected in regional control centers is limited to generic information.

- Water distribution companies cover large areas (one or several counties),

so local processes are not monitored in detail. Attempts to centralize large

volumes of data from local automation panels (via OPC/OPC UA servers)

often result in misrepresentation, leaving historians as mere storage tools

with numerous unhandled alarms.

- Instead of transferring large amounts of live data for costly central analysis,

conclusions should be derived locally and then processed at the central

historian for clarity.

- Communication failures with local systems sometimes lead to data loss.

The overall historian architecture and its integration with other OPC UA

interfacing structures is illustrated in Fig. 4.1-1. The historian structure is

defined by several key characteristics: OPC UA interfacing with full security

compliance, extensible to legacy protocols (e.g., Modbus, S7); Integration

with control structures, transmitting processed conclusions to local

automation for algorithm adjustments; Address space browsing and variable

definition for historian inclusion; Database management, storing selected tags

with timestamps, adaptable to variable or table changes; Querying and

exporting data in online/offline modes across chosen intervals, supporting

.xls, .pdf, and .csv formats; Operator usability through a simple GUI;

Continuous monitoring of the Java application, Node‑Red, and SQLite, with log

file generation for analysis while maintaining lightweight operation; Fault

tolerance, ensuring uninterrupted historian operation despite server timeouts,

discarded sockets, exceptions, or user errors; Modularity, enabling future

development of automatic data analysis and local algorithm adjustments for

water industry objectives.

The historian was validated in real scenarios, specifically at a WTP serving

~8000 inhabitants. This facility operates with an older WinCC 7.2 SCADA

system and a Connectivity Pack extension exposing tags via OPC UA servers.

The application supports self‑monitoring, fault handling, and auto‑diagnosis

across all three levels: the Java core, Node‑Red interface, and SQLite

database. The GUI includes a Status section providing operators with essential

system information (see Fig. 4.1-2). A status log file is maintained for

engineering, recording operational details, encountered faults. Real‑system

testing revealed periodic timeouts indicating connection loss to the local OPC

UA server. These faults required automatic Node‑Red interventions to

reinitialize the connection. The number of restarts is tracked, with the Overall

section displaying information linked to the most recent connection start.

101

Fig. 4.1-1 General architecture of the developed historian and the relation with OPC UA structures.

The GUI Configuration section is presented in Fig. 4.1-3. Configuration is

performed entirely within the application. Database tables are indexed by

timestamp and server ID, while the configuration file remains encrypted on

the local operating system. OPC UA interfacing supports five security policies

(None, Basic128, Basic128Rsa15, Basic256, Basic256Sha256) and three

modes (None, Sign, Sign&Encrypt), with user credential management.

The Data section enables stored information manipulation. Export and chart

modules—critical for water operators—allow table selection, each defined by

non‑overlapping timestamp ranges. Both modules operate in Running and Not

Running states. Data can be exported for analysis in .pdf, .xls, and .csv

formats, while variable evolution across selected tables and time ranges can

be visualized in charts, as shown in Fig. 4.1-4.

Fig. 4.1-2 Status section of the GUI.

102

Fig. 4.1-3 Configuration section of the GUI.

Fig. 4.1-4 Output water pressure evolution inside a selected time interval represented within the chart module.

103

4.2 Non-Invasive IIoT Solution within the Proactive Historian to Reduce Energy

Consumption for Drinking Water Facilities.

Introducing the concept of decentralized Proactive historian means to gain

better knowledge about the process on the edge, to process data, to conclude

an improvement scenario and to be able to execute the efficiency increase

solution. This was a four step strategy for a significant accomplishment within

drinking water facilities. First, [K-28] established data dependencies between

the water source selection and the energy consumption, followed by [K-23]

that processed data, developed the strategy to improve and to action. Work

[K-17] completely automated the strategy, in order to continuously identify

and update the quality of the water sources, respectively [K-12] took the

research to the highest-level and apply the strategy after long-term usage,

making a process aware historian.

4.2.1 Proactive historian identifying and applying the energy reduction strategy

Works [K-28], [K-23] applied the decentralized historian on drinking water

facilities (DWF), and transformed it in a proactive edge solution. The current

section focuses on a typical DWF that is presented in Fig. 4.2-1 (a functional

real process) and consists of water sources, WTP, and water distribution

facility (WDF). The water wells (WW) have two main local control loops in the

automatic regime that guide the water pumping. The primary local control

loop is flow‑based, with a secondary level‑based loop serving as redundancy.

Operator‑defined set‑points are fixed. The analyzed scenario corresponds to a

developed DWF. The DWF includes six WWs, though only four operated in

automatic mode during the initial analysis period.

The water from the WWs flows into the WTP as presented in Fig. 4.2-2. Water

treatment involves aeration, sand and charcoal filtration (4 sand and 2

charcoal filters), disinfection via chlorine stations, and sludge treatment. Sand

filters reduce turbidity, while aeration and charcoal filtration regulate pH and

conductivity. Maintaining legal limits requires significant energy and chlorine

consumption (e.g., blowers, filter maintenance, chlorine injection). Filters are

frequently cleaned with air and water to prevent clogging, leading to high

energy use and water losses. Chlorine dosing employs a flow‑based control

strategy, supplemented by a closed‑loop residual chlorine feedback system.

This secondary loop requires continuous water flow from WWs to the WTP and

approximately 30 minutes to achieve efficiency.

After the filters the water is taken over by the WDF (see Fig. 4.2-1). A typical

WDF includes a pumping station (PS3), electric valves, and reservoirs. In this

104

study, PS3 operates with three pumps equipped with frequency converters

(FCs). Water distribution and request are managed by 3 control algorithms:

- Pressure‑based loop: regulates distribution and rotates pumps based on

operating hours.

- Primary level‑based loop: maintains reservoir levels within hysteresis

limits. When levels drop, water is requested from WWs. Variations in

consumption and reserve issues can prevent strict hysteresis control,

leading to higher energy use and treatment disturbances.

- Secondary flow‑based loop: anticipates peak demand by comparing

Flowmeter 4 and Flowmeter 1 values. If the difference exceeds a threshold,

water is requested from WWs. This loop responds faster than the primary

one. Both water‑requesting loops select WWs based on operating hours and

must account for water and time losses within the WTP.

At night, reduced demand allows the level control algorithm to stop water

sources. However, due to network losses and fixed WW flow set‑points,

sources may start and stop repeatedly, causing pump wear and process

disturbances. Short activations prevent the WTP from reaching stable

operating parameters (e.g., chlorine reaction, aeration, filtration).

WWs differ in flow capacity and water quality, which vary over time. Analysis

of more than 50 DWFs revealed that automation solutions rarely consider WW

quality indicators. By monitoring parameters such as residual chlorine, blower

hours, filter cycles, WW states, flows, and operating times, quality indicators

can be adapted. This enables variable flow set‑point distribution, reducing

energy, chemical consumption, and equipment costs, since frequent starts

increase maintenance and replacement needs. SCADA architectures typically

equip WWs with PLCs, either directly connected to WTP control rooms or

integrated into WDF PLCs. In older systems, WWs are activated by aeration

tank levels or local pressure changes, without reservoir‑based requests. These

legacy solutions lack advanced control strategies, though they could yield

higher energy savings. Modern WTP automation employs redundant PLCs,

with WDF PLCs integrated into SCADA systems centered on redundant

servers. Electrical parameters are monitored in real time, supporting more

reliable and efficient operation. Fig. 4.2-3 illustrates key electrical for both

(redundant) power lines. Energy data from the WTP automation (MCC), WDF

(PS3), internal services panel, and total WTP+WDF consumption are central

to the proposed solution. A DWF is critical infrastructure and research requires

monitoring, with detailed justification, strategy, approvals. Interventions on

legacy systems must remain non‑invasive, while even newer WTP automation

may face owner‑imposed constraints, limiting the capacity of tested strategies.

105

Fig. 4.2-1 A drinking water facility (DWF).

Fig. 4.2-2 A water treatment plant (WTP).

Fig. 4.2-3 Main electrical parameters monitoring of the WTP and water distribution facility.

Improving DWF efficiency requires reducing energy and substance

consumption while increasing productivity and availability. Long‑term data

analysis of thousands of process tags is used to derive an optimal cost‑oriented

recipe, which is first tested on process models and then non‑invasively

implemented at the edge/fog level of real systems. The solution interfaces

with local systems to exchange data and apply the identified recipe without

disrupting automation. Communication with WTP SCADA typically uses OPC

106

UA. When WDF and WWs are fully integrated, redundant SCADA servers

handle interactions. The historian also supports PLC interoperation via legacy

protocols, with direct PLC communication serving as backup during SCADA

maintenance or OPC UA failures.

Data gathering and dependency analysis enable identification of WW quality

indicators, linked to total energy consumption. These indicators guide the

establishment of priorities and flow set‑point references for each WW. The

strategy achieves energy efficiency when system reactions are based

simultaneously on WW priority indicators and flow set‑points.

After analyzing the local process, a priority indicator is established for each

WW. The priority will be a selection tool based on water quality (PQf) and

functioning hours (PHf), and it will influence the flow set-point (FW_f) of the

well’s local flow-based control loop. Variable flow set‑points can replace fixed

values, with formulas developed for priority indicators and flow references

(see [K‑23]). These account for pump protection, well capacity limits, and

reservoir hysteresis levels. The efficiency improvement solution within the

proactive historian was validated on a calibrated DWF model using real input

data and later on a real system. Direct experimentation on critical

infrastructure is not feasible, so testing required long‑term procedures. Two

scenarios were examined. In Scenario 1, initial results from data

accumulation, analysis, and conclusion phases, were tested on models and

short‑term real systems under strict operator supervision, demonstrating

energy efficiency gains. In Scenario 2, two‑week continuous testing was

involving the real plant, with operator‑imposed constraints. Flow set‑points for

WWs remained fixed, no additional wells were activated, and WW4 was

replaced with WW1 within selected wells. The solution was thus tested without

all modules (variable flow set‑points and full well activation). Supplementary

proactive historian analysis extended over an additional year of data.

The scenarios focus on the specified DWF, where local PLCs from the WDF and

WWs communicate via the S7 protocol. The WTP automation employs two

redundant S7‑400H PLCs, while the SCADA system is WinCC 7.2 with

Connectivity Pack, operating on two redundant servers. In the first test

scenario, Fig. 4.2-4 shows the flow evolution of four WWs under fixed flow

set‑point operation, without proactive historian intervention. Water demand

activates WWs without accounting for source quality or quantity.

The first scenario (Fig. 4.2-5–4.2-8) applies priority setting results (Fig. 4.2-

6) for the four WWs considering functioning hours (Fig. 4.2-5) and water

quality indicators. The evolutions of WWs flow references, the reservoir level,

and the total flow set-point for the WWs after applying the solution, are

107

presented in Fig. 4.2-7. The impact on this short-term test on reducing energy

consumption would be, from Fig. 4.2-8 (percentage power differences

between the system with and without the solution), about 9%.

Fig. 4.2-4 Example of flow evolution from the water wells with fixed set-points.

Fig. 4.2-5 Water wells functioning hours in the test scenario.

The second scenario involved two‑week supervised test on the real system

under constrained conditions, with fixed flow set‑points for WWs. During

extended data analysis, changes in local operation were observed, manual

WW activation/deactivation driven by operator preferences or equipment

faults. Over 1.5 years, operators typically switched WWs every 4–7 months.

108

Fig. 4.2-6 Water wells priority indicators in the test scenario.

Fig. 4.2-7 The resulting evolution of: the total flow requested from the water wells, the level in the distribution

tank, and the flow set-point for each water well.

109

Fig. 4.2-8 Percentage power difference after using the solution.

It can be concluded that integrating a new water source requires at least four

months of consistent data analysis before the proactive historian can correctly

incorporate it into decision and control algorithms.

During the two‑week period (23 November–07 December 2019), the flow

evolution of four WWs (WW1, WW2, WW3, WW7) and the corresponding total

energy consumption were recorded and stored. Fig. 4.2-9 shows the 1st week

data. The flow evolution of four WWs and the corresponding total energy

consumption were recorded over four weeks (11 January–08 February 2020)

without applying the efficiency solution. For accurate comparison, these tests

were conducted during a period with similar water demand and consumption

as the initial two‑week trial, excluding the winter holiday interval. Fig. 4.2-10

presents an example of the stored data for the 4th week.

Table 4-1 presents the weekly initial and final energy index values, weekly

energy consumption, and average consumption for both the two‑week period

(2.7 MWh) and the four‑week period (3.5 MWh). The percentage difference

demonstrates the efficiency of the proposed solution, with the study

identifying a consistent ~30% increase in energy consumption.

Fig. 4.2-9 Results with constrained solution. Well flows (mc/h) and energy consumption (kWh) in Week 1 of tests.

110

Fig. 4.2-10 Results without the solution. Well flows (mc/h) and energy consumption (kWh) in Week 4 of tests.

Table 4-1 Total energy consumption (MWh) of the drinking water facility (DWF).

Two weeks with
constrained FDC

solution
(23 Novembe 2019–

07 December 2019)

Four weeks without FDC solution
(11 January 2020–08 February 2020)

 Week 1 Week 2 Week 1 Week 2 Week 3 Week 4
Init. val. (MWh) 722 724.6 742.7 746.3 749.8 753.3
Final val. (MWh) 724.6 727.4 746.3 749.8 753.3 756.7

Consumption (MWh)] 2.6 2.8 3.6 3.5 3.5 3.4
Average (MWh) 2.7 3.5

Difference (%) +30%

4.2.2 Proactive historian in complete solution and long-term testing for the energy reduction

Works [K-17], [K-12] were continuing the previous advances. The research

contributes to the effort towards obtaining a proactive historian able to

increase the efficiency of the supervised industrial system. The key

contribution in [K‑24] is the automatic identification and adaptation of water

well quality indicators through continuous long‑term analysis within the

proactive historian. Further adjustments and testing of concepts were

performed to advance the technological readiness level.

In practice, water quality varies across DWTP sources and changes over time.

When a new source is commissioned, a technical datasheet is created based

on laboratory analysis of sampled water. However, as quality evolves due to

factors such as pollution or overuse, no sensor devices exist to update a

general quality indicator. Operators often rely on empirical observations (e.g.

noticing reduced equipment strain when requesting water from certain

sources) but these are subjective and non‑scientific. Thus, the proactive

historian must continuously analyze operational data, derive reliable quality

indicators, and react autonomously. By integrating flow distribution, operating

111

times, water sufficiency, and maintenance factors, the historian can establish

strategies that reduce energy consumption while optimizing source utilization.

The proactive historian must be flexible and adaptive, evolving with system

requirements. An objective function (e.g. Fig. 4.2-11) should be defined, with

appropriate constraints applied to guide optimization.

As detailed in [K‑12], the proactive historian is designed to be process‑aware.

Local data is contextualized, process components are understood, causal

relationships are identified, and the impact of actions is recognized. Fig. 4.2-

12 illustrates the process‑aware interface, with components, constraints, and

the objective function. A key characteristic of the historian is flexibility,

enabling modification of process components and constraints.

Fig. 4.2-11 Optimizing objectives choice inside the proactive Historian application.

Fig. 4.2-12 Optimizing objectives choice inside the proactive Historian application.

Building on earlier work with the proactive decentralized historian, [K‑12]

examined a long‑operated water treatment and distribution facility. Operators

had established a local regime based on observed process changes,

112

restrictions, and response strategies. For this case study, the historian was

tailored and tested under a suboptimal scenario, where water sources were

manually selected to balance availability and energy efficiency, without

accounting for failures or demand variations. This scenario was chosen as a

challenge: energy use was near minimal, and daily demand could be met by

two wells operating close to optimal points.

The proposed low‑cost historian aimed to improve facility operation by

enhancing energy efficiency and addressing issues such as extended

personnel hours, inability to meet rapid demand changes, and equipment

faults from heavy use. Its design ensured non‑invasive integration with legacy

systems. The goal was to demonstrate the historian’s ability to adapt to

suboptimal industrial scenarios, generate process‑aware recipes, and

interoperate with legacy systems to apply improvements.

Over time, facility practices shifted. To minimize energy consumption,

operators discontinued automatic activation and source selection based on

reservoir levels and operating hours, due to difficulties in establishing flow

set‑points. This created new research challenges:

- Minimal room for further energy reduction: Operators already selected

sources based on prior research, with some scenarios requiring only two

wells to meet demand at near‑optimal drive frequencies.

- Fixed flow set‑points: Wells operated continuously at constant flows,

benefiting from lower night tariffs but failing to adapt to demand variation

or equipment faults, leading to wasted water or shortages.

- Uneven operating time distribution: Manual regimes caused wear and

defects. One source could no longer sustain flow‑based control, while

another showed large fluctuations, further limiting efficiency gains and

underscoring the need for full automation.

A further challenge was to extend historian testing over longer autonomous

periods while maintaining non‑invasive interoperability with legacy system.

The identified challenges were translated into historian tailoring and testing

tasks, summarized as: Automatic well selection based on accumulated data,

prioritizing energy efficiency while considering operating hours; Automatic

activation of wells according to varying demand, peak‑hour accumulation,

variable flow set‑points, and pump frequency constraints (upper, lower,

optimal); Legacy system interoperability to set flow references and control

pumps, with multiple checks for manual regimes, level‑based operation, fault

detection, and proper sampling periods; Safety procedures to deactivate

historian‑based automation in case of malfunctions or operator request,

113

restoring previous local settings before decoupling; Performance evaluation

under suboptimal regimes and extended operation periods.

The optimizing algorithm was refined to include a hysteresis factor (h),

expressed as a percentage of the minimum source flow.

E.g. ℎ =
1

2
∙ 𝑚𝑖𝑛𝑖𝑚𝑢𝑚_𝑛𝑒𝑥𝑡_𝑠𝑜𝑢𝑟𝑐𝑒_𝑓𝑙𝑜𝑤_𝑠𝑒𝑡𝑝𝑜𝑖𝑛𝑡

If the difference between the total distributed flow and the sum of flows from
active sources is less than ½ of the minimum flow of the next idle source (by

priority), that source is not started, preventing pump wear. The same

hysteresis rule applies when stopping a source. A fixed hysteresis value

proved more efficient than variable values, which require frequent updates

and correlation with source evolution but showed no benefit. The historian was
updated to read minimum and maximum flows from a configuration file,

allowing operators to adjust limits as they change over time.

Automation at the WTP uses OPC UA tags for pump start/stop commands

rather than a 0-based flow reference convention, requiring algorithm
adjustments to set these tags correctly. Manual well selection toward

automation demanded additional condition checks and reactions to legacy

system behavior. Specific OPC UA tags for start/stop commands, reference

flows, and total delivered flow had to be defined and verified, significantly
increasing the algorithmic and protection structures for system interoperation.

Finally, in the targeted WTP, filter washing occurs every 24 hours, consuming

~50 m³ of treated water from a tank with 400 m³ capacity, completed in ~30

minutes. To compensate for this rapid level drop, the historian was adjusted

to compute the target water flow not as equal to the distribution flow, but as
an augmented value accounting for filter washing operations.

flow_required_from_sources = p% * DWTP_output_flow.

(where p% was fixed at 120%, but may vary between 110–130% depending

on the treated daily volumes in the WTP, which fluctuate seasonally).

The tank’s water level was maintained by a gradual rise compensating

filter‑cleaning drops, while experiments monitored washing cycle frequency

and clogging status. The solution interfaced with the legacy system through

two loops: Monitoring loop, where the historian collected OPC UA tag values

every 20 s from the WTP server; Optimizing loop, where the historian retrieved

the latest output flow, applied the optimization algorithm, and wrote updated

reference flows and start/stop commands through OPC UA at 60 s intervals.

The historian was deployed on a Raspberry Pi 4 Model B in the WTP command

room, connected to a UPS and accessible remotely via SSH tunneling. It

autonomously analyzed stored data, generated optimization recipes, and

applied them non‑invasively. For testing, the historian operated in monitoring

114

mode from 30 August 2022, with optimization tested during a 50‑hour interval

(27 February–01 March 2023). During this period, operators made no

adjustments, leaving water source control entirely to the historian. The first

evaluation focused on daily energy consumption, using three months of prior

data. Monthly energy indexes were converted to daily averages, with results

summarized in in Table 4-2, demonstrating energy reduction.

Table 4-2 Total energy consumption per day comparison during test with previous months

 December 2022 January 2023

February 2023

01.02 - 27.02 (before

test)

Energy index start (kWh) 1252010,25 1266546,5 1281298,75

Energy index end (kWh) 1266546,25 1281298,625 1293673,25

Total energy consumed (kWh) 14536 14752,125 12374,5

Energy per day (kWh) 468,90 475,875 475,942

Energy/day (kWh) during test 454,38

Comparison
- 14,52 kWh/day

- 3,1%

- 21,495 kWh/day

- 4,51%

- 21,562 kWh/day

- 4,53%

The second analysis compared total energy consumption during the test

interval with similar periods. Specifically, the same Monday 13:30–Wednesday

15:30 interval was examined across three of the four weeks preceding the

test. In addition, comparable 50‑hour intervals (Wednesday–Friday) were

analyzed in both the week before and the week of the test. Across all five

reference intervals, results consistently showed energy consumption

reductions when applying the optimizing strategy, as illustrated in Table 4-3.

Table 4-3 Total energy consumption comparison during test with other similar 50-hours long intervals

30.01.2023 13:30

- 01.02.2023

15:30

(Monday –

Wednesday)

06.02.2023 13:30 -

08.02.2023 15:30

(Monday –

Wednesday)

13.02.2023 13:30 -

15.02.2023 15:30

(Monday –

Wednesday)

22.02.2023 13:30 -

24.02.2023 15:30

(Wednesday –

Friday)

01.03.2023 15:30 -

03.03.2023 17:30

(Wednesday –

Friday)

Energy index

start (kWh)
1280569,5 1283990,5 1287399 1291612,875 1294833

Energy index

end (kWh)
1281572,5 1284977 1288386,5 1292580,5 1295789,5

Total energy

consumed

(kWh)

1003 986,5 987,5 967,625 956,5

During test (27.02.2023 13:30 - 01.03.2023 15:30 Monday - Wednesday)

Energy index start (kWh) 1293886,25

Energy index end (kWh) 1294832,875

Total energy consumed (kWh) 946,625

Comparison
- 56,375 kWh

- 5,95%

- 39,875 kWh

- 4,21%

- 40,875 kWh

- 4,31%

- 21 kWh

- 2,22%

- 9,875 kWh

- 1,03%

115

The third analysis evaluated the water volume entering the WTP, using energy

consumption/water volume as the metric. Two comparison intervals were

considered: the entire week preceding the test and a similar 50‑hour interval.

Results, summarized in Table 4-4, demonstrate effective energy consumption

optimizations during the test period.

Table 4-4 Total energy consumption per m3 of water entering WTP comparison during test with previous intervals

20.02.2023 00:00:00 –

27.02.2023 00:00:00

(the week before test)

22.02.2023 13:30 –

24.02.2023 15:30

Total energy consumed (kWh) 3156,125 967,625

Total water volume entering DWTP (m3) 2813,8 816

Total energy / water volume (kWh / m3) 1,121 1,186

During test (27.02.2023 13:30 - 01.03.2023 15:30)

Total energy consumed (kWh) 946,625

Total water volume entering DWTP (m3) 882,9

Total energy / water volume (kWh / m3) 1,072

Comparison
- 0,049 kWh/m3

- 4,37%

- 0,114 kWh/m3

- 9,61%

Under these conditions, the results were consistent. No stability issues were

observed during the 50‑hour test: the historian software ran without errors or

interruptions, interoperability with the monitored system was seamless, and

the WTP operated under normal quality parameters. The distribution tank

remained safely above risk limits, even after filter washing, and no operator

intervention was required. Consequently, the historian demonstrated a high

TRL level in this approach.

Replacing manual source selection with the proactive historian enables system

adaptation to diverse water needs, including population demand, equipment

failures, poor source quality, clogged filters, or pipe breaks. The historian

adjusts water source flows within 60 seconds of sudden changes, ensuring

responsive and efficient operation. Another observation concerns equipment

wear. Overuse of individual sources is mitigated by considering their operating

hours, yet this hypothesis requires long‑term validation of the solution.

4.3 Long Short-Term Memory-Based Prediction Solution Inside a Decentralized

Proactive Historian for Water Industry 4.0.

The current section is showcasing the study from [K-7]. Local systems in the

water sector are typically centralized within SCADA control centers at local,

regional, and central levels. However, as information ascends the hierarchical

116

pyramid, it becomes filtered and generalized, reducing knowledge of local

processes and limiting the ability to react automatically at the operational

level. Current digital transformation research, aligned with Industry 5.0

principles, emphasizes decentralization and increased edge‑level processing.

Consequently, solutions that exchange process data and implement LSTM

neural network strategies should be deployed at the edge/fog level, close to

SCADA systems or automation panels.

The proactive historian is designed as a low‑cost decentralized solution

capable of interfacing with legacy systems, collecting and analyzing data,

identifying dependencies, and achieving objective functions under constraints

in a process‑aware manner. It can act directly on local automation to

implement optimized recipes. This approach opens significant research

opportunities in the water sector, particularly when industrial data is applied

to specific scenarios and process structures, requiring tailoring and long‑term

testing. An intensive project to develop and validate the proactive historian in

real scenarios began in July 2022, with research steps and current limitations

outlined in the study (see Fig. 4.3-1). Pilot structures were initiated within

operational drinking water and wastewater legacy systems, with proactive

historians tailored for specific scenarios.

This section addresses prediction, a critical element for meaningful

improvements that must be grounded in real systems. Two prediction targets

were defined: Primary target - equipment fault prediction, a key industrial

research requirement; Secondary target - prediction of analog process values

to enable non‑invasive control adjustments in existing automation. This need

arises from the high time constants in certain treatment processes, where

immediate control changes cannot achieve desired effects. Such situations are

common in the biological phase of wastewater treatment and in drinking water

treatment (e.g. chlorine correction).

In Fig. 4.3-1, the third step of the research divides into two branches of the

prediction algorithm, followed by a fourth step adapting the strategy to the

low‑cost historian infrastructure:

- Step 3 – Branch 1: Fault prediction. Fault prediction required datasets

containing equipment faults. All process equipment was monitored, with

experts identifying critical elements and time objectives. The chosen

method was an LSTM recurrent neural network (NN), applied through:

training on the initial dataset, validation with a second dataset, further

validation using newly acquired data.

117

- Step 3 – Branch 2: Process value prediction. Similar actions were applied to

stateless variables, with the algorithm tailored for analog value prediction

to support non‑invasive process control.

Fig. 4.3-1 Optimizing objectives choice inside the proactive Historian application.

Step 4 is the Adaptation to low‑cost decentralized historian infrastructure. The

prediction strategy was adjusted to account for: Reduced sampling rate,

limiting data volume and processing time; Simplified NN model complexity;

Smaller variable sets. An additional research goal was to enable independent,

automatic algorithm improvement by developing and validating incremental

training within the historian. Future work will compare on‑condition batch

training with incremental approaches.

Step 5 is the Autonomous objective selection. Further research will integrate

additional AI techniques to: Define prerequisites for fault prediction (e.g.

minimum fault counts) and process value prediction (e.g. values improving

time‑constrained processes); Identify appropriate variable sets for chosen tag

values; Autonomously validate incremental training; Establish conditions and

constraints for the historian to evaluate, validate, and deploy new algorithms

alongside legacy systems, with safety, ethical analysis, upgrade procedures.

4.3.1 Prediction Solution in the Proactive Historian

For implementation, Microsoft Visual Studio Code was used with Python 3.

Data structuring and visualization employed Pandas, NumPy, Matplotlib,

Scikit‑learn (train_test_split), and Beautiful Soup. The AI model was

developed using TensorFlow (Sequential, Layers, MeanSquared, Adam) and

118

Scikit‑learn (MinMaxScaler, Normalize, Accuracy_score). The next step was to

select the most suitable neural network model for predicting future values.

Since the dataset consists of time‑ordered sequences, the problem was framed

as time series forecasting. An LSTM recurrent neural network was chosen for

its ability to capture long‑term dependencies, selectively retain or discard

information via input, output, and forget gates, and handle non‑linear,

non‑stationary data. Sequential processing preserves event order, making

LSTM particularly appropriate for this case.

Two generic LSTM models were developed: a complex model (~100,000

parameters) and a simpler model (~19,000 parameters). Subsequent

prediction tests showed that the simpler model (see Fig. 4.3-2) achieved equal

or superior performance compared to the complex one.

Fig. 4.3-2 The simpler model details.

The simpler sequential model comprises the following layers:

- InputLayer – defines input format, with size determined by timesteps

(sequence length) and nr_inputs (features/OPC UA tags).

- LSTM – 64 units capture temporal dependencies and complex sequential

relations in the data.

- Dense – 8 units with ReLU activation, introducing non‑linearity by

zeroing negative values and retaining positives, aiding non‑linear feature

learning.

- Dense – nr_outputs units with linear activation, generating unrestricted

continuous predictions.

An important perspective is the integration of Incremental Training to enable

automated learning and improve model accuracy after real‑world deployment.

This approach allows the AI to adapt to evolving data and adjust predictions

accordingly, but mechanisms must be enforced to prevent negative impacts

on accuracy. Hardware capabilities must also be evaluated to ensure feasibility

compared to models without incremental updates.

The architecture is structured as a loop managed by the historian’s Java

application: Data extraction from the SQLite database into a CSV file, covering

the most recent 15 hours at 1‑minute intervals; Execution of the LSTM model

via Python, loading both the input data and the TensorFlow model. Predictions

generated here also represent the incremental learning step; Processing and

storage of predictions back into the SQLite database, forming the basis for

subsequent optimization actions.

119

Adaptive mechanisms include data preprocessing, rolling averages, moving

medians, real‑time anomaly detection, retraining (incremental and periodic

full training), and continuous monitoring with KPIs such as accuracy and

precision. Incremental Training minimizes latency, requires fewer resources

per update, and scales better than batch training with large datasets.

However, it demands constant computational resources and lacks advanced

optimization techniques available in batch training. A hybrid approach, batch

training during off‑peak times combined with incremental updates, ensures

scalability, efficiency, and responsiveness. Additional strategies include

dynamic learning rate adjustment, sliding window methods, prioritized

memory updates, and regular mini‑batch updates. Concept drift can be

detected using statistical tests such as the Page‑Hinkley test or ADWIN.

4.3.2 Prediction Case Study and Results

The WWTP case study serves ~6,000 inhabitants and follows a classical

sequential process. Two treatment lines are implemented: after mechanical

inlet treatment, biological treatment occurs in two sequential batch reactors

with time‑based aerobic and anoxic phases. The plant also includes sludge and

bypass lines. Control is managed by nine S7‑1200 PLCs connected to a

redundant SCADA WinCC V13 system via fiber optic ring. The pilot structure

integrated the proactive historian through two OPC UA servers from SCADA.

Deployment revealed two issues: Frequent sludge pump failures in biological

reactors, disrupting continuity and maintenance; Inadequate response of

biological treatment to sudden CODcr variations, requiring adaptation time.

Predicting pump faults at least 3 hours ahead and CODcr fluctuations at least

1 hour ahead would enable timely corrective actions. For implementation, data

preprocessing was required. The historian, storing data since July 2022,

monitored 460 OPC UA tags at ~20 sec. intervals. After filtering, data was

structured for LSTM modeling. Using Scikit‑learn’s train_test_split, datasets

were divided into 63% training, 30% testing, and 7% validation.

The first practical application focused on predicting sludge pump status at the

WWTP, aligned with the predictive maintenance objective of the research. The

studied pump, one of two handling sludge disposal from the first biological

reactor, had its status recorded by the historian (see Table 4-5). The input data

for training the generic LSTM neural network consisted of the selected OPC UA

tags listed in Table 4-6. These characteristics were essential, as adding or

removing tags affected model optimality. The pump status served as the

output variable. The sample size was set to 30 time steps, enabling predictions

over 5 future hours, with 10 epochs applied to the database.

120

Table 4-5 Mapping of sludge pump values to their significance

Value Significance

0 Unknown status

1 Fault

2 Not running

3 and 4 Normal running

9 Warning

Table 4-6 List of characteristics for sludge pump failure prediction

Characteristic significance
Measuremen

t unit
Type of value

Pump status See Table 1 Numerical integer

Pump automatic mode - Boolean

Pump remote command - Boolean

Pump frequency Hz Numerical float

Pump power kW Numerical float

Pump current A Numerical float

Pump energy meter kWh Numerical integer

Biological reactor sludge stabilization flow m3/h Numerical float

Biological reactor sludge stabilization volume m3 Numerical float

The LSTM configuration used a learning rate of 0.001, batch size of 32, 100

epochs, and Mean Squared Error (MSE) as the loss function. Training and

testing were conducted on two scenarios, differentiated by the time intervals

selected for the datasets. Graphical results illustrating the sludge pump status

prediction for one of the tested scenarios are presented in Fig. 4.3-3 (with the

actual state of the tags) and Fig. 4.3-4 (only the prediction).

Fig. 4.3-3 Pump state and prediction.

Fig. 4.3-4 Prediction only.

Model accuracy was evaluated using four approaches: r2_score (Scikit‑learn)

to compute the coefficient of determination with zero error margin; MSE and

121

RMSE as standard error metrics; A final method applying a 0.5 error margin

for integer pump status values, allowing extrapolation to compensate

prediction deviations. All approaches were applied across both scenarios, with

results summarized in Table 4-7, confirming strong model accuracy.

Table 4-7 Accuracy of trained models – sludge pump prediction

Evaluation Approach Scenario 1 Scenario 2

Coefficient of Determination (R2) 0.546 0.546

Mean Squared Error (MSE) 1.056 1.056

Root Mean Squared Error (RMSE) 1.027 1.027

Accuracy (correct/total with 0.5 error margin) 98.625 % 96 %

The second practical application focused on predicting the CODcr quality

indicator, using the same generic LSTM neural network as the starting point.

This application pursued a secondary objective: optimizing legacy process

control. The selected input characteristics from the available data, used to

train the LSTM model, are listed in Table 4-8.

Table 4-8 List of characteristics used as input data for neural network training – CODcr prediction at WWTP inlet

Characteristic significance Measurement unit Type of value

CODcr mg/l Numerical float

Phosphate (PO4) mg/l Numerical float

Ammonium (NH4) mg/l Numerical float

Acidity (pH) - Numerical float [0-14] interval

Temperature Celsius degrees Numerical float

Flow from septic trucks m3/h Numerical float

Volume from septic trucks m3 Numerical float

The LSTM configuration employed a learning rate of 0.01, batch size of 32, 50

epochs, and MSE as the loss function. Results are presented in Fig. 4.3-5

(predicted vs. actual values) and Fig. 4.3-6 (predictions only). Following the

accuracy evaluation, the model results were presented in Table 4-9.

Table 4-9 Accuracy of the trained model – CODcr prediction at the WWTP inlet

Evaluation Approach Result

Coefficient of Determination (R2) 0.422

Mean Squared Error (MSE) 173.535

Root Mean Squared Error (RMSE) 13.173

Accuracy (with Scikit-learn library) 97.237 %

122

Fig. 4.3-5 Actual value and prediction.

Fig. 4.3-6 Value prediction only.

4.4 Non-Invasive Control Solution for Energy Efficiency in Wastewater Treatment

Plants.

Study [K‑24] highlighted the interoperability of the historian, demonstrating

its ability to augment functional systems with external data. Weather

information was integrated and analyzed through graph‑based dependency

methods to predict wastewater treatment values, showing how systems can

connect and interoperate.

Work [K‑36] addressed energy efficiency in WWTPs, noting that most

automation follows a standard oxygen regulation pattern for

nitrification/denitrification, supported by two‑positional air pressure control.

Improving energy efficiency remains a major concern in wastewater treatment

[161]. Companies monitor specific consumptions (energy and substances per

m³ of treated water/sludge). Blowers are the largest energy consumers.

Based on data analysis, and recognizing oxygen’s role in reducing ammonium

while limiting nitrate increase, a Model Predictive Control (MPC) strategy was

applied to optimize oxygen use. MPC has a strong theoretical background in

the water industry [162]. Within IIoT and Industry 4.0, invasive interventions

in existing plants are avoided due to warranties, documentation gaps, and

infrastructure risks. Interoperability enables higher‑level control structures

without altering local automation, making it a cornerstone of smart water

management [163]. With OPC UA servers widely deployed, the proposed MPC

strategy was designed as noninvasive.

The research in [K‑36] proceeded in two phases: First - plant data analysis,

model design and calibration, MPC algorithm development, simulation with

123

real inputs, OPC UA interfacing, and Node‑RED structuring; Second (planned)

- detailed implementation, parameter refinement, long‑term real‑time testing,

results analysis, and validation of the developed structure.

Without detailing the benchmark simulation model, the higher‑level control

structure was implemented as illustrated in Fig. 4.4-1.

Fig. 4.4-1 The simpler model details.

The MPC higher‑level control scheme for the WWTP is shown in Fig. 4.4‑2. To

enhance performance, two measurable disturbances were considered: influent

flow rate (Q₀) and influent ammonium concentration (NH₄). A linear process

model incorporating these disturbances was required to implement the

feedforward component of the MPC strategy. The manipulated variable was

the set‑point of the in‑plant closed‑loop dissolved oxygen controller.

All simulations were conducted in Matlab Simulink using real BSM1 plant

parameters (tank dimensions, external recycle flow, sludge wastage flow).

The full plant’s differential equations were solved with a 4th‑order Runge–

Kutta routine, employing a fixed integration step of 0.005 hours.

WWTPInfluent Effluent

HIGHER LEVEL
CONTROL

NH4

Q0

O2 Setpoint

NH4

NH4 Setpoint

Fig. 4.4-2 Inputs and outputs of the application.

124

The algorithm implementation comprised two components: OPC UA interfacing

and the MPC algorithm. Through the OPC UA Client, once connected to the

server, the application retrieved WWTP variables including inlet/outlet flow,

inlet/outlet ammonium, aeration basin oxygen and ammonium, and the

high/low oxygen limits of the two‑positional controllers. In addition, failure

tags from flowmeters and ammonium/oxygen sensors were monitored, as

they could impact system performance. After subscribing to the OPC UA tags,

Fig. 4.4‑3 illustrates the inlet flow of the WWTP over 8 hours on 27 Oct. 2017.

Fig. 4.4-3 WWTP inlet flow [m3/h] for 8 hours on the 27th of October 2017.

After processing and validating the subscribed variables at each sampling

period, the MPC algorithm outputs a two‑element array that adjusts the high

and low limits of the two‑positional oxygen controller with hysteresis. Fig.

4.4‑4 illustrates the extraction of these oxygen limit values from the MPC

decision, the configuration of namespace and tag names, the value insertion

into the OPC UA server, and the hysteresis display in the dashboard.

Fig. 4.4-4 Oxygen high and low limit value insertion to the OPC UA Server.

To apply linear MPC in wastewater treatment control, the BSM1‑based model

required calibration and validation. The system’s dynamic response was

obtained after running the benchmark for 100 days under normal conditions,

ensuring steady‑state values. Simulations combined BSM1 operational data

with real plant data, including influent/effluent concentrations (NH₄, NO₃, P),

pH, and flow rates (influent, effluent, recycle, wastage) over 30 days, of which

28 days were used in benchmark runs. BSM1 data corresponded to a

dry‑weather scenario with a 15‑minute sampling period.

125

Initial open‑loop tests showed that 14 days were sufficient to capture system

dynamics. Consequently, 50% of the data was used for model calibration, and

the remaining 50% for validation. Figure 4.4‑5 presents the real data inputs

employed in the validation benchmark (14 days).

Fig. 4.4-5 Model validation data input (wastewater treatment plant data)

A comparison of process and model dissolved oxygen concentrations in the

bio‑reactor tank for days 8 and 9 is shown in Fig. 4.4-6.

Fig. 4.4-6 Comparison between data and model oxygen concentration in bio-reactor tank.

The fit (F) is calculated, where y/ ŷ is the validation data/model output.

  


















ymeany

yy
F

ˆ
1100

The model achieved a fit of 11.16%, yet given the dynamics of biological

nitrification and denitrification, the calibration is considered an acceptable

representation of process behavior. Using real WWTP data, results indicate

126

that aeration energy savings are feasible without compromising purified water

quality. Fig.  4.4‑7 presents mean daily influent and effluent ammonium

concentrations over 30 days. Legal effluent limits are 4 mg/L ammonium and

18 mg/L total nitrogen (sum of nitrate/nitrite and Kjeldahl nitrogen). A clear

relationship emerges: higher effluent ammonium concentrations correspond

to lower aeration energy consumption per m³ of treated wastewater. The

same applies to total nitrogen. Thus, oxygen supply can be reduced, achieving

energy savings while maintaining compliance with regulatory thresholds.

Fig. 4.4-7 Influent/effluent mean day ammonia nitrogen concentration and Aeration Energy (AE) consumed for

ammonia nitrogen removal from wastewater.

BSM1 simulations confirmed the concept. Fig. 4.4‑8 presents results for two

oxygen set‑points, showing that lower O2 during nitrification increases effluent

ammonium concentration, yet it remains below the regulatory limit.

Fig. 4.4-8 Effluent ammonia and total nitrogen concentrations for two O2 concentration set-points.

127

At an oxygen set‑point of 2 mg/L, aeration energy consumption was

253.66 kWh/day, decreasing to 236.36 kWh/day at 1.5 mg/L, showing a 7%

reduction. Employing a variable reference, adjusted according to effluent

ammonium concentration, enables significant aeration energy savings.

4.5 Non-Invasive Control Solution inside Higher-Level OPC UA based Wrapper for

Optimizing Groups of Wastewater Systems.

The current chapter presents the research from [K-32]. Water distribution

companies continuously develop local automation and SCADA systems for new

objectives or refurbishments. These projects are executed by entrepreneurs

under specific contracts: WWPS contracts typically follow the FIDIC Red Book,

while WWTP contracts follow the FIDIC Yellow Book. Thus, WWPSs are

implemented according to tendered technical designs with limited execution

flexibility, whereas WWTPs allow entrepreneurs to propose their own technical

concepts. Local automation/SCADA solutions result from diverse equipment

and vendor‑specific implementations, while legacy systems often rely on

phased‑out or proprietary technologies. According to [164], water control

structures face interoperability issues due to non‑standard SCADA interfaces,

leading to integration problems in consumption, distribution, identification,

and maintenance. As noted in [165], water and wastewater networks require

retrofitting, extension, and maintenance for functional optimization, with

flexibility and interoperability being critical in industrial environments.

Interoperability does not guarantee interoperation. WWPSs are typically

cascaded, with outputs feeding WWTPs, creating process interdependencies.

However, analysis shows that entities generally operate independently due to

differing contracts and requirements. Two major problems were identified:

- Storm water flows disrupt WWTP processes, causing bypass use, financial

losses, energy costs, and potential pollution.

- WWPS blockages from foreign materials or electrical faults can cascade

upstream, leading to public wastewater overflows.

Optimization is possible if WWPSs and WWTPs are treated as groups with

interoperation. Given warranties, maintenance contracts, missing

documentation, proprietary constraints, invasive changes to local systems

should be avoided. A non‑invasive control structure, capable of manipulating

local variables and enhancing existing systems, reduces implementation time,

cost, and downtime. The proposed solution is modularly implemented within

128

an OPC UA‑based wrapper, integrated into the decentralized historian, and

designed to optimize WWPS and WWTP behavior collectively.

4.5.1 Group Control Solution for WWPS-WWTP

The proposed solutions address the two identified problems by considering the

in‑series sewage system structure (WWPSs–WWTP) shown in Fig. 4.5‑1. The

architecture consists of a WWPS network linked to the WWTP, where each

station collects wastewater and pumps it to the next, with WWPS 1 serving as

the feeder to the treatment plant.

WWPS 1

L

Level Sensor

WWPS 1

L

Level Sensor

WWPS 2

L

Level Sensor

WWPS 2

L

Level Sensor

WWPS n

L

Level Sensor

WWPS n

L

Level Sensor

WWTP

Sewage
System

Fig. 4.5-1 Sewage system –WWPSs – WWTP architecture.

Optimizing WWPS–WWTP group control requires designing two higher‑level

control strategies (HLCS) that address the identified problems without altering

local systems. These strategies are tailored to the specific WWPS type

(frequency converter or direct/soft starter). In both approaches, WWPSs act

as buffer tanks, with two objectives: Reducing WWTP influent flow during

excess wastewater from pluvial water; Limiting discharge rates toward a

blocked WWPS to prevent overload.

When a fault condition is detected, the application shifts the system into a

fault state, activating higher‑level supervisory control. The proposed solution

modifies the start/stop set‑points of the WWPS group, achieving a

non‑invasive control strategy (see Fig. 4.5‑2). The WWPSi manipulated

variables are pumps start level (Li_ON), pumps stop level (Li_OFF) and pumps

frequency (F_FCi) for WWPSs equipped with FCs (Frequency Converter). The

controlled variables are the level or the flow rate. The HLCS monitors also the

actual wastewater level (Li), the flow if available (Fi) and two fault generator

parameters (FLTi) - electrical powering fault and emergency button status.

Fig. 4.5-2 HLCS interaction with WWPS from a WWTP–WWPSs network.

129

The optimization concepts for WWPS–WWTP groups are presented separately,

reflecting the distinct nature of the two identified problems. Key variables are

defined for clarity: Li_ON_high / Li_OFF_high – elevated pump start/stop levels

for WWPSi; Li_ON_normal / Li_OFF_normal – normal pump start/stop levels

for WWPSi; WWTP_inlet_max_flow / WWTP_inlet_min_flow – maximum/

minimum influent volumes over a fixed period; WWTP_inlet_actual_flow –

current influent flowmeter reading; WWPSi_power_failure / WWPSi_emg –

electrical failure and emergency button states; WWPSi_faulty_state – faulty

condition of WWPSi (see Fig. 4.5‑1).

Supplementary wastewater flow volume scenario consists of: A fault is

detected when WWTP_inlet_actual_flow > WWTP_inlet_max_flow and L1 >

L1_ON, caused by storm water entering the WWPS network. This activates

WWPS1_faulty_state. If any upstream WWPS(i‑1) is faulty and Li‑1 >

Li‑1_OFF_high, then WWPSi_faulty_state is also triggered.

Higher‑level control steps are described in the following lines. For WWPS 1 with

frequency converters (FCs), a flow‑based closed‑loop PI control maintains

influent flow at the WWTP nominal design rate, with FC frequency as the control

signal. Once pumps are active, L1_ON shifts to L1_ON_high. If supplementary

inflow forces pump frequency below 30 Hz, L1_OFF is raised to L1_OFF_high,

stopping pumps. If L1 > L1_OFF_high, low‑frequency protection reduces

operating frequency to zero. If L1 > L1_ON_high, pumps run at maximum

frequency until L1 < L1_OFF_high. When pumps stop and

WWTP_inlet_min_flow is reached, L1_ON and L1_OFF revert to normal levels

under closed‑loop control.

For WWPS 1 with direct or soft start, L1_ON and L1_OFF are first shifted to

L1_ON_high and L1_OFF_high, stopping the pumps. When pumps are off and

WWTP_inlet_min_flow is reached, the levels revert to L1_ON_normal and

L1_OFF_normal.

In upstream WWPSs (i > 1) entering a faulty state, level control maximizes

storage capacity: Li_ON and Li_OFF move to high values, stopping pumps. For

WWPSs with frequency converters (FCs), a closed‑loop level control maintains

the maximum possible level. At the farthest upstream station (WWPS n), if

wastewater reaches Ln_OFF_high, no buffer remains and flooding must be

avoided. Operation then follows the hysteresis band [Ln_ON_high,

Ln_OFF_high], with FCs maintaining Ln_ON_high as the setpoint. All other

WWPSs (i > 1) follow the same procedure.

Fault control deactivation initiates when WWPSi_faulty_state clears, Li_ON

and Li_OFF return to normal values, respectively FCs reset to initial frequency.

Full deactivation requires sequential recovery from the farthest upstream

130

station toward WWPS 1. If influent volume falls below WWTP_inlet_min_flow

and L1 < L1_OFF_normal (WWPS 1 empty), the farthest faulty WWPS is

deactivated. Subsequently, each WWPSi_faulty_state clears when Li+1 <

Li+1_OFF_normal, WWPS(i+1) is deactivated, and WWTP_inlet_min_flow is

reached.

The Blocked WWPS scenario is further described. Fault detection conditions

include: a) WWPS level not reaching Li_OFF with near‑zero discharge (for

calibrated flowmeters). b) WWPS level (Li > Li_ON) not decreasing over time

(widely applicable and automatically identifiable). c) Fault signals such as

WWPSi_power_failure or WWPSi_emg.

Higher‑level control procedure begins with WWPS1_faulty_state, treating

WWPS 1 as blocked. Setpoints L1_ON and L1_OFF are raised to L1_ON_high

and L1_OFF_high, stopping pumps.

If L1 > L1_max = L1_ON_high – dL1 (≈ Li_OFF_high), WWPS2_faulty_state

is triggered, extending buffering to WWPS 2. This process cascades upstream

through all WWPSs. If the fault persists at the last station (WWPS n), pumps

operate under faulty setpoints (Li_ON_high, Li_OFF_high). For FC‑equipped

pumps, Li_ON_high serves as the PI control reference.

Fault control deactivation for blocked WWPS scenarios (e.g., clogged pipes)

require maintenance intervention and manual reset via digital tag switch.

Deactivation begins by restoring L1_ON/L1_OFF to normal values. If L1 <

L1_OFF_normal, the farthest faulty WWPS (WWPSl) is cleared. Sequential

recovery proceeds upstream to WWPS 1, with each WWPSi_faulty_state

deactivated once Li+1 < Li+1_OFF_normal and the downstream station is

cleared.

As local automation generalities, each WWPS operates autonomously with:

Two‑positional hysteresis level control and analogue measurement; At least

two pumps, with local fault detection (overcurrent, overheating, leakage);

Manual/automatic selectors, emergency button, and electrical fault detection

(UPS/generator); Flowmeters measuring discharge flow and volume.

HLCS monitors available data (levels, hysteresis limits, emergency/fault

states, flow, pump frequency/state). Fault detection and control are achieved

by adjusting high/low level limits and, for FCs, pump frequency. Direct

start/stop commands are generally overridden by local controllers, but

frequency setting is supported. By monitoring a limited set of tags and

adjusting only level limits and pump frequency, HLCS achieves non‑invasive

fault detection and control for WWPS–WWTP systems.

131

4.5.2 Results

The solution was implemented in the local historian (Node‑RED) and in

Ignition, with two case studies addressing both simulation and real scenarios.

Simulation was required to test conditions difficult to reproduce

simultaneously in practice and to explore application limits without stressing

critical infrastructure. The simulation scenario examines the WWPS–WWTP

network under supplementary wastewater inflows at the WWTP inlet caused

by storm water, reflecting real facility characteristics. The WWTP serves a city

of ~13,000 inhabitants, with a maximum influent flow (30 min) of 98 m³.

When this threshold is exceeded and the equalization basin is full, wastewater

is diverted to the bypass channel untreated. The minimum influent volume

(30 min) required for treatment is 17.5 m³, thus WWTP_inlet_min_flow was

set to 49 m³. The simulated network includes three WWPSs without frequency

converters. During testing, tag values were manually adjusted to trigger fault

control, progressively extending from WWPS 1 to WWPS 3, followed by

verification of gradual fault deactivation.

The experiment begins as shown in Fig. 4.5‑3, with levels expressed in mm

and WWTP_inlet_vol in m³. All events are logged via the Ignition Gateway to

track system status. When WWTP_inlet_vol > WWTP_inlet_max_flow

(Fig. 4.5‑4), the fault control procedure is triggered, automatically raising the

hysteresis limits of WWPS 1. Subsequently, the wastewater level in WWPS 1 is

manually increased so that L1 > L1_OFF_high. The algorithm then shifts the

upstream station (WWPS 2) into a faulty state, likewise increasing its

hysteresis limits (see Fig. 4.5‑5).

-L1_OFF_normal
-L2_OFF_normal
-L3_OFF_normal

-L1_ON_normal
-L2_ON_normal
-L3_ON_normal

-L1
-L2
-L3

-WWTP_inlet_vol

Fig. 4.5-3 Screenshots presenting the starting point of the experiment.

-WWTP_inlet_vol

-L1

- L1_ON_high
- L1_OFF_high

Fig. 4.5-4 Entering fault control procedure and faulty state for WWPS 1.

132

 -L1

- L2_ON_high

- L2_OFF_high

Fig. 4.5-5 Extending the fault control procedure to WWPS 2.

The procedure continues until WWPS 3 enters a faulty state, resulting in all

WWPSs being blocked. The WWTP inlet volume (30 min) then decreases below

WWTP_inlet_min_flow. With L1 > L1_OFF_high, the hysteresis limits of

WWPS 1 are reduced to initiate pumping. As shown in Figure 4.5‑6, when L1 <

L1_OFF_normal and WWTP_inlet_vol ≤ WWTP_inlet_max_flow, the faulty

state of WWPS 3 is deactivated, and its hysteresis limits return to normal

operating values.

-WWTP_inlet_vol

-L1

-L1_ON_normal

-L1_OFF_normal

-L1

- L3_ON_normal

- L3_OFF_normal

Fig. 4.5-6 Deactivating the faulty state for WWPS 3.

By lowering wastewater levels and keeping WWTP_inlet_vol below the

maximum threshold, all WWPSs progressively exit their faulty states.

Two real WWPS experiments were conducted to demonstrate the capabilities

of the non‑invasive HLCS and the benefits of interoperation. The tests involved

two fault scenarios within the WWPS network (Fig. 4.5‑7). Wastewater

collected by WWPSs 3 and 6 was pumped to WWPS 7 and then to WWPS 8. The

fault conditions were artificially induced, and all actions remained non‑invasive

with respect to local system operation.

Fig. 4.5-7 WWPS network configuration.

133

Scenario 1 examines a clogged pipe fault at WWPS 6, detected by a high

wastewater level. Prior to the experiment, WWPS 6 operated normally within

the two‑positional hysteresis band (pump stop/start limits: 350–900 mm). The

level evolution over a 4‑hour period (09:45–13:50) is shown in Fig. 4.5‑8.

Fig. 4.5-8 WWPS 6 functioning on 17.06.2017 for 4 hours.

The Scenario 1 tests were conducted on 17.06.2017 (Saturday), when water

consumption remained relatively constant, with minor storm water inflows

from light rain. Under these conditions, about four filling/emptying cycles per

hour were observed (see Fig. 4.5‑8). WWPS 6, a first‑level wastewater

collector, operates independently of upstream pumping failures. The fault was

induced by lowering the pump start level limit in the HLCS (not locally). At

16:30, the fault was detected, and the pump start/stop limits were raised to

5000 mm and 4800 mm (see Table 4-10). The level limit set to 5000 mm is

roughly the half of the station storing capacity.

Table 4-10 Database view between 16:29:53 and 16:30:38

Moment Level HighLimit LowLimit

Sat Jun 17 2017 16:29:53 863 900 350

Sat Jun 17 2017 16:30:08 878 900 350

Sat Jun 17 2017 16:30:23 892 5000 4800

Sat Jun 17 2017 16:30:38 908 5000 4800

WWPS 6 remained in the fault control procedure for 2 hours 15 min., with the

level reaching 3573 mm. An initial measurement error occurred, as the level

rose abruptly from 950 mm to 3495 mm in 2 min. Thereafter, the increase was

gradual, totaling only 70–80 mm. The level evolution during fault control is

shown in Fig. 4.5‑9. At 18:46, the fault control procedure was deactivated, and

the pump start/stop levels were restored to normal operating values. Table 4-11

presents database values recorded at the moment of deactivation.

After wastewater accumulation in the faulty scenario, WWPS 6 was emptied

within 2 minutes. The experiment continued until 19:35, confirming that

WWPS 6 returned to normal operation. The HLCS effectively detects and

manages a clogged pipe failure, providing operators with approximately

134

48 hours for repair (under the 5000 mm level limit) without introducing

additional issues in WWPS performance or unnecessary energy consumption.

Fig. 4.5-9 WWPS 6 functioning on 17.06.2017 after failure detection.

Table 4-11 Database view between 18:46:23 and 18:48:24

Moment Level [mm] HighLimit [mm] LowLimit [mm]

Sat Jun 17 2017 18:46:23 3573 5000 4800

Sat Jun 17 2017 18:46:39 1190 900 350

…

Sat Jun 17 2017 18:48:24 351 900 350

Scenario 2 examined a failure at WWPS 7 (e.g. emergency button or electrical

fault). The station’s behavior is analyzed globally alongside other WWPSs

(Fig. 4.5‑7). As a critical network point, WWPS 7 was operating normally, but

its emergency button tag was artificially activated in the HLCS to trigger fault

control.

Prior to fault activation, all WWPSs functioned in normal regime for 23 minutes

(20:37–21:00), with level evolutions shown in Fig. 4.5‑10. WWPS 7 averaged

12 filling/emptying cycles per hour. The tests were conducted on 19.06.2017

(Monday evening), during high water consumption. At 21:00, the failure was

detected, and pump start/stop limits for WWPS 7 were raised to 5000 mm and

4800 mm. The level evolution until 21:20 is presented in Fig.  4.5‑10.

The failure at WWPS 7 was maintained between 21:00 and 22:00, during

which the level rose to 1795 mm. Beyond 900 mm, the measurement error

was smaller than in Scenario 1 (WWPS 6), though a brief, unjustified spike in

level indication was still observed (Fig. 4.5‑10c). Throughout the fault control

procedure, WWPSs 3 and 6 remained unaffected (Fig. 4.5‑11).

Fig. 4.5‑12 illustrates the level evolution of WWPSs 7 and 8 before and after

fault control deactivation. As shown in Fig. 4.5‑12a, approximately 10 minutes

were required for WWPS 7 to resume a normal filling/emptying cycle following

wastewater accumulation during fault control.

During the fault control procedure at WWPS 7, with WWPSs 3 and 6 operating

normally, the level rise rate stabilized after 2.5 minutes at approximately

135

600 mm/hour. Under these conditions, the non‑invasive solution provides the

operator with about 6.3 hours to resolve the issue (based on a 5000 mm

starting set‑point) without creating additional problems at WWPS 7 or

adversely affecting other stations in the network.

a) WWPS 3 level before and after the failure

b) WWPS 6 level before and after the failure

c) WWPS 7 level before and after the failure

d) WWPS 8 level before and after the failure

Fig. 4.5-10 WWPS 3, 6, 7, 8 before and after the failure.

a) WWPS 3 level until failure deactivation

b) WWPS 6 level until failure deactivation

Fig. 4.5-11 WWPS 3, 6 until failure deactivation.

a) WWPS7 level until and after failure deactivation

b) WWPS8 level until and after failure deactivation

Fig. 4.5-12 WWPS 7, 8 until and after failure deactivation.

136

4.6 Image-Processing-Based Low-Cost Fault Detection Solution for End-of-Line ECUs in

Automotive Manufacturing.

The current chapter presents data from [K-20]. In the automotive industry,

Electronic Control Unit (ECU) manufacturing concludes with complex

end‑of‑line (EoL) testing before delivery to clients. Within the Industry 4.0

framework, efficiency gains require automatic visual inspection, integrated

seamlessly into legacy production lines without interruptions. To align with

Industry 5.0 principles, human involvement in decision‑making remains

essential. This chapter introduces an image‑processing low‑cost fault detection

(IP‑LC‑FD) solution for EoL ECUs, designed for high‑quality, rapid detection.

The system targets defects such as incorrect pin mounting, missing or extra

pins, damaged clips, and surface cracks. The IP‑LC‑FD system combines

hardware and software: Raspberry Pi microcomputers, Pi cameras, and

Python/OpenCV environments. The research progressed through two stages:

development of an experimental model followed by a prototype.

4.6.1 The Experimental Model

The experimental model aimed to achieve a ≥95% fault detection rate with

processing times under 7 s, ensuring integration into the production line. Cost

reduction was prioritized, focusing first on hardware, then on software and

maintenance. The major hardware expense was tele‑centric cameras, whose

cost increases with object size. The first ECU analyzed measured 21 cm ×

18 cm, requiring the IP‑LC‑FD system to be positioned for easy operator

handling. The hardware architecture (see Fig. 4.6‑1) was built around

Raspberry Pi 3 boards and Pi cameras. A board‑camera ensemble costs over

100×less than a tele‑centric camera, though Pi cameras introduce perspective

distortion and Raspberry Pi boards have limited processing power compared

to PCs with GPUs. The architecture comprised: 4 Raspberry Pi 3 boards (1

master, 3 slaves); 4 V2 Pi cameras with 2× telephoto lenses, mounted 31 cm

above the ECU (±0.5 cm error on vertical axis, I²C communication); Ethernet

switch; Barcode scanner.

Fig. 4.6‑2a shows the final positioning of the enclosures in the experimental

model. The complete structure (Fig. 4.6‑2b) incorporates a uniform lighting

system installed adjacent to the enclosures. From an image‑processing

perspective, each ECU module was divided into four zones, each photographed

by a camera–Raspberry Pi assembly. Due to the board’s dimensions, this

division was necessary to properly manage perspective distortions and

shadow effects. A switch integrated into the hardware architecture enabled

parallel processing of the four image areas, increasing speed through both

137

parallelization and multithreading in the Raspberry Pi software. For software

and maintenance costs, the system emphasized flexibility, adaptability, and

modularity: Easy module replacement; Expandability to different ECU types;

Capability to learn new configurations for existing ECUs; GUI‑based parameter

configuration (lighting, area, search position, etc.); Operation without moving

parts, reducing maintenance needs. Thus, the low‑cost image‑processing fault

detection solution overcame hardware limitations while delivering

performance comparable to, or better than, more expensive systems.

Fig. 4.6-1 The hardware architecture of the IP-LC-FD experimental model.

Fig. 4.6-2 The experimental model hardware of the IP-LC-FD. a) The disposal of the four Raspberry Pi - Pi camera
ensembles. b) The final experimental model.

138

The experimental model enables fault detection on ECU boards at the EoL

stage. Fig. 4.6‑3 illustrates examples of pins, connectors, clips, and cracks.

The system tasks include: Detecting crooked, missing, or extra pins;

Identifying misplaced or damaged clips; Detecting board cracks; Reporting

and logging the inspection process; Collecting/marking faults and aggregating

data on the master unit; Supporting user and board selection, debug

procedures, and GUI‑based interaction; Managing existing configurations and

learning new ECU configurations; Barcode reading; Data exchange among the

four micro‑computers and communication with higher‑level traceability.

Fig. 4.6-3 Some analyzed components on an ECU.

The master node controls each slave, dictating tasks such as image capture,

processing, and download preparation. Each slave serves only the master,

with communication handled via Ethernet. Slave nodes implement servers,

and data exchange uses Remote Procedure Call (RPC), a request–response

protocol for process synchronization. RPC methods, registered on the server,

may accept parameters in XML or JSON formats. During execution, the client

remains blocked until completion, with an error‑catching mechanism for

networking failures. RPC functions as a form of inter‑process communication

(IPC) across distributed systems. Importantly, system modifications (e.g.

adding modules or cameras) do not affect the server or RPC requests.

The architecture (Fig. 4.6‑4) shows dark green RPC requests at the master,

bidirectionally linked to slave servers. The Poller module manages incoming

server requests. Color coding indicates: Beige‑white blocks: specialized

modules unique to each node; Yellow blocks: distributed modules with similar

functions; Green blocks: communication modules handling requests,

prioritization, interpretation, keep‑alive connections, and command execution.

The master node is the central element, providing command and control and

serving as the sole communicator with other nodes. Its software components

are shown in Fig. 4.6‑5, and the functional flowchart in Fig. 4.6‑6.

139

Fig. 4.6-4 The general architecture of the IP-LC-FD experimental model.

Fig. 4.6-5 Software architecture of the Master node.

140

Fig. 4.6-6 The processing flowchart.

In the software architecture, each slave node is organized into components

based on functionality and interaction with other modules (see Fig. 4.6‑7). The

foundation includes I/O drivers controlling peripherals and external libraries

(.dll files for xmlrpclib, OpenCV2, and NumPy) that support higher‑level

components. The two primary low‑level modules dependent on these libraries

are Functionality and Server. The system is modular, with each of the 15 main

modules having a defined scope and simple interconnections. Some modules

include configuration files for calibration. Due to system scale and

confidentiality, detailed descriptions remain limited.

A key module is the Template Matcher, the functional core of the application.

It employs OpenCV primitives and low‑level image processing techniques,

operating directly on pixel color values to analyze input images.

One of the module’s most complex methods addresses detection of the

smallest ECU pins. It uses three input parameters: templ – a template image

from the project file structure, used to locate matching zones in the source

image; connector – the cropped image of a specific ECU connector; refs – a

list of coordinates, previously processed by the Pattern Learning module,

which selects positions via the user interface and returns them for

optimization. The refs list ensures pins are detected within expected positions,

allowing validation against a threshold zone. Invalid pins are added to a fault

141

list, later reported to higher application levels and visually marked with a red

square in the interface. The module also includes a method for connector

identification and a compare function, which extends the correct set of pin

coordinates provided by the Pattern Learner. The compare method checks:

Missing pins – when no detection occurs at expected coordinates; Extra pins

– when detection occurs outside the defined set. Extra pin detection follows

an inverse logic to basic detection, introducing significant complexity.

Fig. 4.6-7 The processing flowchart.

The Threads module manages all application threads, continuously monitoring

resources during runtime to avoid delays. One key resource is memory

availability for report storage. The system periodically diagnoses the report

location, calculates byte usage, and displays the result as a status bar (0–

100%) on the user interface.

The Pattern Learner module enables analysis of multiple ECU board types

sharing the same mechanical structure. While the boards tested in the

experimental phase had identical structures, their pin configurations defined

distinct functional characteristics and circuits. In industry, reusing mechanical

structures across ECU variants is common to reduce costs. Accordingly, the

Pattern Learner exposes all connector pin configurations in a user interface

window, allowing operators to add or remove pins as needed.

The Base64 module encodes images into character arrays to simplify network

transfer. Direct binary transmission may cause compatibility issues across

operating systems or misinterpretation by certain protocols; encoding ensures

all data is represented as ASCII text. The References module generates

reference files for specific ECU types, supporting image processing by storing

data on board elements and baseline captures for defect identification. Each

142

reference set (Fig. 4.6‑8a) is saved in a folder containing a template (.png)

and a pins layout (.json) (Fig. 4.6‑8b).

The PL Interpreter module translates Boolean values from the GUI into pin

coordinates. Marked pins are validated (correct position, intact, not bent),

while unmarked pins are checked to confirm no extras exist. Each connector’s

pins are processed sequentially, producing a dictionary structure with

connector names as keys and Boolean lists as values. This dictionary is stored

in a JSON file as a reference resource (Fig. 4.6‑9).

a)

b)

Fig. 4.6-8 References - a) file structure; b) saving procedure

Fig. 4.6-9 Data saving model.

From high‑level objects, values are extracted, grouped into a dictionary, and

transmitted by the master node to the slaves. Once loaded into RAM, two

functions apply filters to obtain pin coordinates (Fig. 4.6‑10). These

143

coordinates, stored as lists of tuples, serve as inputs for detection methods in

the TemplateMatcher module. The Processing Tools module supports other

detection modules with auxiliary methods. Though indirect, its impact on

overall performance is significant. For example, rotation procedures are

continuously applied, using straight angles to align camera positions or small

angles (≤10°) to compensate for mechanical placement tolerances. Improper

rotation can compromise cropping and lead to data loss. Cropping procedures

are essential both for accurate detection and for reducing execution time.

Fig. 4.6-10 Coordinates conversion process.

4.6.2 The Prototype

A new mechanical‑hardware structure was required to meet production line

demands and ensure performance for basic ECU types. A prototype was

designed, implemented, integrated, tested, and validated in the production

line. Building on the experimental model, the prototype employed six

Raspberry Pis and six physically separated cameras, improving inspection

quality for connectors affected by perspective issues. The separation also

enhanced surface luminosity during analysis. The first prototype used a

circular mechanical surface with cameras magnetically attached (Fig. 4.6‑11).

However, during initial experiments, operators frequently displaced cameras,

disrupting detection and necessitating recalibration. To address this, the final

design adopted a rectangular mechanical structure (Fig. 4.6‑12), allowing

easily adjustable yet stable camera positioning.

The system’s data transmission capability was expanded to support 1 master

and up to 5 slaves, covering request/response exchanges, data aggregation,

reporting, and concluding procedures. A generic platform was designed for n

processing modules. In practice, the prototype includes two branches, one

144

master and one slave, with generic slave software applicable to any Raspberry

Pi in the scheme. This modularity simplifies maintenance and replacement.

The prototype was extended to operate across the main ECU classes in the

production line. This required a new software module concept to accommodate

differences in hardware‑mechanical structures and ensure adaptability.

Modules were developed to incorporate layouts from all ECU classes and their

specific board sets. The pin search module was further optimized through

cropping techniques, reducing both the search area and processing time.

Fig. 4.6-11 First phase of the IP-LC-FD prototype.

New detection modules were developed based on “islands” identification, with

islands separated or grouped to improve accuracy. A dynamic illumination

threshold was introduced for each pin, addressing light and shadow variations

in open environments. Since pins and pinholes are small, variable thresholds

were essential for reliable detection.

Layout management (saving, storing, loading) was optimized to handle the

large number of layouts in production. Detection task optimization was

achieved by having the master equipment extract and distribute connector

lists to slaves, eliminating fixed assignments and allowing easy module

replacement. Processing time was reduced by removing the need for

connector rotation in slave software. Finally, a new layout learning module

145

was implemented exclusively on the master equipment, avoiding the need for

ssh/vnc connections to individual slaves.

Fig. 4.6-12 Final IP-LC-FD prototype.

A new offset separation was implemented, assigning each pin its own search

area. Additionally, a dedicated module calculates the filling factor for each

pin’s offset. The prototype supports full configuration changes via the GUI and

operates in complete integration with the company’s traceability software.

4.6.3 Results

Both the experimental model and the prototype were rigorously tested and

validated according to their technological readiness level. For the experimental

model, testing was conducted in the laboratory using the IP‑LC‑FD stand with

~40 ECU boards from a single class. Different pin layouts allowed evaluation

of multiple configurations. To simulate diverse scenarios, boards were

deliberately modified (bent/broken pins, induced cracks, damaged clips). The

stand itself was optimized to meet production line requirements, concluding

that a 30 cm × 30 cm diffuse light surface should be mounted above, with

Raspberry Pi and camera enclosures positioned ~5 cm below, and ECUs placed

30.5 cm beneath the enclosures.

The prototype was tested over 3 months in production, using more than 1000

boards across four ECU classes with varied pin configurations. In the first

scenario, the fault detection mechanism for bent pins was analyzed. The

146

algorithm consisted of capture the source image (Fig. 4.6‑13a), crop the

connector region (Fig. 4.6‑13b), detect pin holes and pin positions, mark bent

pins with red squares, correctly placed pins remained unmarked (Fig. 4.6‑13c).

 a)

b)

c)

Fig. 4.6-13 Results obtained with the IP-LC-FD system: a) the source image; b) the extracted connector; c) the
faulted pins detection.

The second scenario illustrates extra pin detection. Within the Pattern Learner

Interpreter, all pins linked to a connector are unchecked (see Fig. 4.6‑14a). In

this configuration, the algorithm identifies pins located in unmarked positions,

while leaving empty holes unmarked. The results (see Fig. 4.6‑14b) show all

detected extra pins highlighted in orange.

a)

b)

Fig. 4.6-14 Results obtained with the IP-LC-FD system: a) the unmarked pins in the Pattern Learner module for a
connector; b) the detected extra pins in the specified connector.

147

Table 4-12 summarizes additional testing results, while Fig. 4.6‑15 illustrates

the user interface during a test in which an ECU board showed no faults and

was declared Passed.

Fig. 4.6-15 An overview of the user interface and a test result for no detected faults.

Table 4-12 Test procedure implementation results

Test procedure
Success

rate

Testing the informational flow at the algorithm level (“fairness” concept). a) All

module/function activation signals producing the expected outcome (e.g. image

capturing on the master/slaves generates the image file, the EdgeDetection function

always determines the corresponding execution, the ImageDifference executes always

the correct code, etc.); b) correct transition between the states, no unknown state; c) the

application is providing outputs and allows the transition to e new cycle both in

normal and debug functioning regimes.

100%

Verifying the communications and the threads. a) The communication between the

master and the slaves; b) The communication with the traceability application; c)

Correct functioning of the local threads.

100%

Testing the local reporting module. 100%

Testing the ability to learn new types of boards and the management of saved ECUs. 100%

148

Verifying the data aggregation and integration from all processing equipment, and the

concluding manner.
100%

Testing the referencing procedure (references addition, adjustments, etc.) 100%

Testing the correct connector detection and fault detection for small and large pins,

clips, cracks.
98%

Testing the missing pins detection. 98%

Testing the extra pins detection. 98%

Capability Pass repeatability test – An good ECU is tested successfully 50 times in the

industrial environment and 50 times the system provides the same result, Passed.
100%

149

5 Efficient and Human Centered Industry 5.0 Data Propagation and

Representation in the context of Technology Oriented Digital

Transformation Interfacing

The current chapter consists of information from three scientific works [K-1],

[K-3], [K-4]. The goal was to increase efficiency of data propagation and

representation in the context of digital transformation and Industry 5.0

requirements. The solution had to target a high TRL, and to be technology

driven and applicable in the current industrial context. Another objective was

to bring the academic perspective closer to the industrial technology, to

reduce the gap between the entities. Currently the academia is not really

involved in the technology validation and fast spreading, this issue causing

lots of unverified opinions and guidance to arise.

Efficiency increase is the first objective that requires approaching digital

transformation and applying IIoT and Industry 4.0 concepts. Digital

transformation fundamentally relies on interfacing and connectivity. The

challenges posed by legacy protocols and solutions at the OT level are now

extending to the IT domain, where outdated legacy systems introduce an

entirely different set of complexities. Industry 5.0 extends previous

advancements by integrating a societal vision centered on human‑centric

values, sustainability, and resilience, while maintaining the efficiency goals of

Industry 4.0. At the OT level, data often lacks structure and context, which

are typically provided by middleware bridging IT systems and higher SCADA

layers. As hierarchy increases, technological expertise declines, leading to

suboptimal process representations. Moreover, the existence of multiple

SCADA solutions for the same industrial process generates inconsistent

interpretations, higher costs, longer development timelines, and greater

maintenance complexity.

Section 5.1 is based on [K-3], and it is focusing on establishing a foundation

for a single-source-of-truth (SSoT) human-oriented data representation in a

context of a virtual unified space for digital transformation. The chosen

transport protocol is Message Queue Telemetry Transport (MQTT) and data is

transmitted in a structured and contextualized form using JSON and Sparkplug

B. The physical objects from industrial processes contain graphic descriptors

and defined templates that increase human perception, creative initiative and

guiding capabilities, making him able to be in the center of decision making.

The other two pillars of Industry 5.0, sustainability and resilience are also

positively influenced by the improved representation and perception on all

levels, including possibilities of decentralized decision making and AI guiding.

The applicability of the solution can be both on the IT and OT levels, including

150

the cloud, and in process control independent applications. The section

approaches the Ignition towards Node-RED data propagation. The Ignition

environment is set to function in the MQTT and Sparkplug configuration, acting

as a SCADA node. An external software application that can be placed on any

hierarchical level is set to interface using MQTT, integrating a complete user-

defined data type template.

Section 5.2 is based on [K-4] and it approaches the research regarding the

OPC UA protocol that can proliferate structured data including graphical

representation from the OT level towards other higher supervision levels. The

approach considers both legacy systems and technological progress, assuring

efficient and human centered structured, contextualized, and graphically

sustained data propagation on the OT level. The builds upon industry adopted

environments and devices placing Node-RED on the lower level, assumedly

PLC level, respectively Ignition on the higher level as SCADA environment.

Section 5.3 is based on [K-1] and it is closing the three-step research focusing

on technology-driven data propagation and representation in the Industry 5.0

context. The study provides a bidirectional and flexible propagation of

structured and graphically represented data using Sparkplug B protocol,

considering Node-RED and Ignition environments. The solution is applied and

evaluated qualitatively and quantitatively, proving its efficiency.

5.1 Targeting Broker Based Solution in the Context of Technology Driven Digital

Transformation, from Ignition Sparkplug B to Node-RED.

Industrial efficiency has advanced through systems adopting a common

OT‑level language. Enabled by IIoT and Industry 4.0, many industries

achieved open, interoperable, flexible, scalable, and high‑performance OT

process control, monitoring, and supervision. However, the persistence of

legacy systems with diverse protocols limits data quality and consistency,

while multiple SCADA solutions across hierarchical levels hinder unified and

reliable operation and maintenance.

At the IT level, efforts focused on digital transformation, primarily through

ERP implementations (financial modules, asset management). Yet

interoperability remains constrained: systems rely on REST architectures,

local relational databases without timestamps, and even isolated Excel files.

The most impactful improvement came from cloud technologies, which

facilitated adoption of lower‑level OSI protocols such as MQTT and AMQP,

positively influencing IT integration.

151

The envisioned digital transformation that currently represents one of the

most important topics associated with industrial revolution today [166-167]

assumes first of all interoperability and OT-IT data integration [168]. For

digital transformation, data must be structured, modeled, normalized,

contextualized, and trusted. Key debates persist around protocol foundations,

architectures, conversion/wrapping modules, truth sources, security, and

implementation techniques. Current directions converge on publish–subscribe

protocols and event‑driven architectures. The state of research, reflected in

off‑the‑shelf solutions, will guide urgent trends. However, industrial legacy

systems and the impact of existing products must be considered when defining

architectures. Academic research, validation should be significantly expanded

to position technologies impartially by value, impact, and future necessity.

The primary objective of Industry 4.0 is to enhance efficiency, as highlighted

in reviews of automation and supervision trends [169]. Efficiency

improvement was regarded from various perspectives, as energy consumption

reduction [170], as increasing production volumes and speed [171], as faster

and better fault prediction [K-7], etc. Certain directions, such as enhancing

functional safety, reducing the environmental footprint, or improving the

quality of human work, are not direct objectives of Industry 4.0. These aspects

may appear as secondary accomplishments but are not foreseen outputs of

Industry 4.0. According to [172], European industry should reinterpret

Industry 4.0 to include a societal perspective and transition toward

Industry 5.0. Industry 5.0 builds on Industry 4.0 through three pillars [173].

[174] details a human‑centric resilient transition, defining three functioning

modes: autonomous, parallel, and expert/emergency. Study [175] anticipates

a greater share of virtual workers than humans and field robots, while arguing

that humans must remain at the top of decision‑making.

This chapter aims to address key objectives in light of the current industrial

context, research status, and rapidly evolving scenarios:

Goal 1: Establish a unitary view of process objects across all hierarchical

levels, enhancing human vision and perception within the company and

positioning them as central actors in decision‑making.

Goal 2: Consolidate a Single Source of Truth (SSoT) through contextualized

and distributed data, thereby increasing resiliency via improved access to

structured and understandable information for operations, and supporting

sustainability through human‑guided decentralized AI algorithms.

Goal 3: Promote academic analysis of industrial developments, ensuring the

establishment, evolution, and consolidation of chronologically validated

technologies and solutions.

152

5.1.1 Industrial and Scientific Context

OT systems continued to evolve, with increasingly decoupled solutions

emerging. OPC UA, as the most representative Industry 4.0 protocol,

introduced new specifications for Publish–Subscribe requirements, with

scientific contributions such as paper [K‑19], which proposed a UDP

broker‑based solution. However, companies have not yet mass‑produced

equipment implementing the latest OPC UA specifications, with many devices

still relying on the Client–Server paradigm. This slow adoption is also noted in

[176]. A significant perspective is set by Siemens, which adopted MQTT as a

transport protocol for its OPC UA devices (e.g. S7‑1500) to enable Publish–

Subscribe functionality. Furthermore, work [177] presents an OPC UA Publish–

Subscribe solution using MQTT for sensor networks, achieving high‑frequency,

low‑latency message transmission, developed with the open62541 stack.

Paper [178] addresses low‑cost, long‑range wireless sensor interfacing,

showing that Sparkplug B with MQTT offers advantages over the legacy

Modbus protocol. Work [179] proposes an architecture based on Sparkplug B

and MQTT for a unified namespace, with data pushed directly from OT without

applying the Purdue hierarchical model. Sparkplug B is only gradually entering

the scientific literature, promoted mainly through successful off‑the‑shelf

products from Inductive Automation and Cirrus Link. Sparkplug B provides

several benefits, easy manipulation, plug‑and‑play, auto‑discovery, and low

overhead, and is strongly supported by influential products such as Ignition,

which offers versions for SCADA, Edge, and Cloud, and brokers like HiveMQ,

enabling unified namespace setups in the context of MQTT and Sparkplug B.

The protocol’s adoption is highly dependent on the success of the Ignition

environment, and digital transformation based on Sparkplug B is difficult to

envision without it. Ignition is among the most flexible and open SCADA

environments, though additional solutions are needed to fully exploit its

potential. Compared with IGSS SCADA from Schneider Electric, Ignition does

not natively structure data into objects and atoms, and templates are less

easily conceived. However, with further software development, user‑defined

data types (UDTs) can diversify and extend perspectives.

A major advantage of a human‑centric Industry 5.0 system would be to

provide unitary graphical representations across all user levels. Moreover,

Sparkplug B could be further exploited to achieve capabilities equivalent to

OPC UA Alarms & Conditions (A&C), as implemented in Siemens products. The

overarching goals are to research and develop bridging solutions between

industry‑driven environments and protocols, highlighting the strengths of

153

widespread technologies, and to provide additional capabilities that enhance

independence, flexibility, scalability, and operational efficiency.

Digital transformation introduces the Smart SCADA concept (e.g., Xylem Vue),

positioned above legacy SCADA systems to manage OT‑level supervision while

enabling OT–IT convergence. Other companies employ the Node‑RED

environment to integrate lower‑level SCADA and provide higher‑level

supervision and intelligence (e.g., [K‑8] in automotive manufacturing building

management). At the IT level, which plays a critical role in digital

transformation [180], interfacing differs substantially from OT. Common

practices include REST and SOAP APIs, though many IT solutions remain

isolated silos, with direct database access and Excel‑based imports still

prevalent. Some technologies now provide MQTT links. Meanwhile, ERP

systems, increasingly complex due to digitalization requirements [181], face

challenges in integration with OT, often requiring data lakes, warehouses, and

business intelligence dashboards [182].

The OT–IT convergence is regarded as the most essential step in digital

transformation. An SSoT ensuring common knowledge and structured context

across all data remains insufficiently addressed in academic literature, as

noted in [183] regarding the unified namespace. Practice‑oriented

researchers, however, present the unified namespace as a key enabler. In

[183], authors propose integrating the unified namespace with ISA‑95

architecture via asset‑administration shells for data interpretation and

wrapping. Work [176] provides an overview of a unified namespace‑based

event‑driven architecture for smart shop floors, discussing protocols and

open‑source tools. The unified namespace using MQTT is further explored in

[184], applied to printed‑circuit‑board surface‑mount technology systems

within the Industry 4.0 context.

5.1.2 General Architecture and Solution Development

The proposed solution employs a two‑step approach: first, SCADA‑level data

processing prior to publication; second, subscriber/client‑level processing to

ensure integration and visualization. It defines a publish–subscribe

event‑driven architecture (EDA) with decoupled entities, aligned with the

unified virtual space/unified namespace concept, and extends the SSoT

principle through graphical representation of process objects and associated

data values. In industrial practice, particularly within the Purdue model, the

upper OT level is represented by SCADA control centers. Modern SCADA

systems increasingly employ user‑defined data types (UDTs), with some

environments integrating UDTs into graphical templates. The Ignition

154

environment enables the creation of structured instances combining

UDT‑based data with graphical descriptors, supporting advanced

contextualization and visualization.

Data from structured instances are published via the Sparkplug B and MQTT

protocol ensemble, transmitted through an MQTT broker within a unified

virtual space. In this architecture, subscribers can access the published data

according to the framework presented in Fig. 5.1-1. Within the Node‑RED,

subscribers can access data via an EDA without polling, providing human

operators with enhanced graphical representations of technological process

values. The resulting template instances are perceived in a unitary manner

across the enterprise, ensuring consistency in visualization and interpretation.

Fig. 5.1-1 Solution architecture considering MQTT Sparkplug B as UDT generator

The two‑step methodology outlined above is designed to implement the

workflow of data management as described within Fig. 5.1-2. The workflow

integrates Ignition for structured data modeling and processing, preparing

information for publication via an MQTT broker, and Node‑RED for real‑time

processing and visualization. This approach ensures efficient data acquisition,

transformation, and dissemination within an EDA based on Sparkplug B with

decoupled entities. In the initial phase, Ignition builds the data structure by

155

defining and instantiating a UDT, subsequently linked to a graphical template.

The UDT encapsulates key process attributes along with an additional variable

that stores the template, combining structural elements (layout, dimensions,

hierarchy) and behavioral elements (tag bindings, real‑time values,

interactivity). This variable enables external processing and visualization.

The next phase involves data extraction and serialization into JSON, chosen

for its flexibility and ease of transmission via MQTT. Extraction is performed

through event‑based scripts, ensuring updates propagate only when changes

occur. Scripts systematically traverse the template hierarchy, retrieving all

relevant properties while preserving relationships among nested elements. A

recursive approach guarantees proper representation of group structures in

the final dataset. Additional steps include recalculating bounding boxes for

ShapeGroup elements, since aggregate dimensions are not inherently stored.

By analyzing subcomponent coordinates, the recalculation preserves the

visual hierarchy. Specialized mechanisms address component‑specific

properties, such as multi‑state behaviors in toggles or buttons, and color

gradient interpolation for shape‑based graphics.

Fig. 5.1-2 Functional diagram

The final extracted dataset comprises both static and dynamic properties.

Static attributes include absolute and relative positions, dimensions,

background and foreground colors, and font properties. These define the

structural characteristics of elements and are essential for accurate visual

representation. Dynamic attributes capture data‑driven elements such as

real‑time values from tag bindings, component states, and specific object

behaviors. Together, they establish a direct link between visualization and the

functional layer of the monitored process, ensuring operational accuracy.

156

The extracted data is serialized into a hierarchical JSON format, fully compliant

with Sparkplug B specifications. This compliance guarantees semantic

compatibility with industrial automation frameworks and enables seamless

integration into subsequent processing workflows. An element resulting from

serialization, containing both visual and behavioral properties, is highlighted

in Fig. 5.1-3. Structured data include both the static properties together with

the behavioral ones.

Fig. 5.1-3 JSON structure containing behavior properties

At the next stage, the JSON object is published into an MQTT tag within

Ignition. During data distribution, the MQTT broker serves as the intermediary

between Ignition and the final consumer, represented by Node‑RED. Within

the MQTT transmitter, correct metric encoding is essential. Ignition

Sparkplug B introduces a birth certificate message upon initial publication,

registering the UDT template instance as the active data source. The

Node‑RED consumer detects the availability of new data. Messages are

structured into distinct metrics, including timestamps, element names and

types, real‑time tag values, and metadata, enabling the consumer to

reconstruct historical data, track system changes, and maintain updates. In

cases of failure or removal, a death certificate message is transmitted,

signaling the consumer that the data source is no longer valid. This

mechanism ensures continuous awareness of data validity, preventing

reliance on outdated information.

The second step involves the Node‑RED client as the final consumer. Once the

MQTT broker distributes the JSON payload, Node‑RED parses the data,

extracts relevant metrics, and prepares them for real‑time visualization.

Message structures received contain both visualization data and updated tag

values, highlighted within Fig. 5.1-4 and Fig. 5.1-5. Each metric corresponds

to a specific attribute of the UDT instance.

157

At this stage, Node‑RED searches for updated tags within the UDT instance to

synchronize with real‑time data and apply graphical representation updates.

Fig. 5.1-4 JSON structure in Node-RED for key attribute

Fig. 5.1-5 JSON structure in Node-RED for visualization data

158

The consumer identifies the relevant UDT instance via its unique identifier and

modifies the associated tag values. Once synchronization is complete, the

dataset is restructured into a new JSON payload, which serves as the

foundation for interface construction. The interface is constructed using an

SVG‑based approach, dynamically generating UI components from the JSON

payload. Each visual property is mapped onto the SVG canvas with precise

positioning to ensure consistency. Path‑based shapes are grouped within their

parent containers, preserving hierarchical structure. All components are

continuously updated in response to real‑time data changes, maintaining a

live connection to the underlying system state.

5.1.3 Case Study and Results

The solution was validated through a case study involving two main entities:

the publisher and the subscriber, connected via an MQTT broker. The publisher

is an Ignition SCADA (Vision), which communicates with the lower PLC layer

using OPC UA. For testing, the environment employed a KepserverEx OPC UA

server. Ignition transmits structured data to the Chariot MQTT broker using

Sparkplug B over MQTT. The subscriber is a Node‑RED application, which

receives and processes the data, converting it into JSON format. The overall

case study architecture is represented in Fig. 5.1-6.

Fig. 5.1-6 Case study architecture

The scenario illustrates motor supervision. Unstructured data reaches the

SCADA level, where it is structured in Ignition using a UDT that defines

attributes such as temperature, speed (with units), motor state, motor

control, and faults. Motor states are represented by five values (word 0–4),

159

set according to the PLC algorithm and varying with motor speed. Fault

detection considers three conditions (over‑temperature, over‑current, and

leakage) identified through bit‑wise analysis of the three least significant bits

of the incoming word tag. Template graphics are linked to UDT in Ignition. A

motor descriptor from the Symbol Factory is configured to bind with the motor

state tag, changing color according to speed (e.g. yellow for 1500–2500 rpm,

orange for 2500–300 rpm). Two LED displays are bound to the UDT’s

temperature and speed properties, while a start‑stop button (linked to the

least significant bit of the OPC UA tag) and a label are added.

UDT template instances were created, and a Jython scripting solution was

applied to publish structured data, including template graphics and bindings,

stored as a string attribute of the UDT. Data was transmitted via the broker,

then extracted, processed, and represented in Node‑RED, with updates

reflected in the Node‑RED Dashboard, closely mirroring the Ignition Window.

Multiple tests across various local tag values validated the approach. The

paper presents two scenarios, with the initial configuration showing three

motor instances, each with distinct data values, as depicted in Fig. 5.1-7 and

Fig. 5.1-8. Fig. 5.1-9 and Fig. 5.1-10 illustrate the resulted dashboard in

Node-RED, showing correct, structured and complete data representation

(e.g. the state colors of motor 1 is yellow while the speed is 2000 rpm).

Fig. 5.1-7 Three motor UDT template instances in
function in Ignition Window – scenario 1

Fig. 5.1-8 Three motor UDT template instances in
function in Ignition Window – scenario 2

160

Fig. 5.1-9 The three UDT template instances shown
automatically in Node-RED – scenario 1

Fig. 5.1-10 The three UDT template instances shown
automatically in Node-RED – scenario 2

5.2 Data Propagation on the Operational Technology Level Based on OPC UA

Interfacing, within a Case Study Using Node-RED and Ignition.

Considering both legacy systems and technological progress, the section

proposes a solution that assures efficient and human centered structured,

contextualized, and graphically sustained data propagation on the OT level.

This work builds upon industry‑adopted environments and protocols to ensure

rapid adoption and broad impact. A Node‑RED and Ignition case study

demonstrates PLC–SCADA data integration, with structured and graphically

represented data transfer via OPC UA, yielding positive results without

requiring additional SCADA‑level developments.

With the Purdue model dominating the OT level, newer architectures

sometimes side‑push SCADA systems [185] through direct PLC data transfers.

Security concerns and protocol‑related advantages often position SCADA as a

pass‑through layer for vertical data movement. Emerging unified virtual

space/unified namespace architectures [186] also incorporate SCADA levels,

typically local HMIs and supervisory systems, but rely on decoupled entities

and middleware. In some cases, isolating the PLC level leads to local HMIs

functioning as pass‑through SCADA structures. Across architectures, data

structuring, quality, adaptability, and human‑centricity must be prioritized. A

161

bottom‑up approach to structuring data enhances higher‑layer integration,

enabling improved usage, comprehension, and sustainable AI deployments at

edge/fog levels. When data structures include graphical representations of

protocol‑interfaced entities, all consumers, including human operators, gain a

unitary perception of process entities. Since control strategies and

representations developed at the PLC level are closest to the technological

process, they provide the most meaningful insights.

Cost considerations remain critical. Implementing multiple SCADA solutions

across hierarchical levels often duplicates process and control structures,

leading not only to development costs but also to licensing and maintenance

expenses, particularly for local automation panel HMIs. Additional software

layers within HMIs may reduce reliability, availability, and security, especially

when upgrades are required. An essential aspect of the current digital

transformation trend is the choice between off‑the‑shelf products proven

competitive and flexible [187], or high‑TRL solutions capable of rapid

implementation. Legacy OT systems have long lifecycles, and changes involve

significant costs following detailed cost–benefit analyses. Conversely, the cost

of waiting can also be substantial in the context of Industry 4.0 and 5.0

requirements, which limit protocol improvements or redefinition of software

environments [188]. Academic research must therefore evaluate whether full

reinvention of protocols and environments is necessary, or if add‑on

improvements to existing developments are sufficient. Within this context, a

foreseen human‑centered Industry 5.0 solution aims to ensure: Structured,

contextualized, and graphically represented data propagation at the OT level;

Fast deployment by leveraging existing industrial technologies and

equipment; Large impact through reliance on key industrial protocol concepts;

Efficiency in time, cost, and processing for SCADA development, maintenance,

and data manipulation.

5.2.1 Actual Status of Literature and Industry

The OPC UA protocol was the key enabler of Industry 4.0 and IIoT [189–190],

succeeding the influential OPC Classic, which, through centralized servers,

opened industrial connectivity for major producers and new enterprises.

Transitioning to OPC UA at the OT level has faced persistent challenges due to

the inertia of legacy systems and older products [188]. While Modbus TCP,

Profinet, Ethernet/IP, and other Ethernet‑based protocols remain consolidated

at PLC levels, lower automation layers still rely on serial Modbus, Profibus,

Mewtocol, Canopen, etc. Despite this, OPC UA has become the widespread

IIoT interface in manufacturing and other industries, with numerous wrappers

162

developed. It is now present on most PLCs, where equipment typically follows

basic client–server specifications with fixed structuring.

At the OT–IT convergence, the Unified Namespace concept [183] emerged,

often broker‑based with MQTT and Sparkplug B packing, promoted by

industrial products such as Ignition from Inductive Automation. Ignition

gained broad adoption in industries using OPC UA, valued for its namespace,

address space, stability, and security, while Sparkplug B achieved popularity

in specific domains. In [191], process data is transmitted via MQTT, packed

in Sparkplug B, and visualized through Node‑RED and Ignition. Although

OPC UA has advanced with publish–subscribe specifications, few industrial

solutions implement full end‑to‑end OPC UA publish–subscribe systems. Work

[192] demonstrates such an approach, using MQTT for wireless sensor

networks within the industrial Internet.

Sparkplug B is not a widely adopted protocol. Some issues were discussed and

need to be solved: Birth‑storms occurrence when the main client/subscriber

disconnects, forcing all publishers to resend birth certificates, which can

overwhelm the network; Data loss risks if the primary client crashes, as

publishers stop transmitting under the store‑and‑forward mechanism, with

quality of service remaining limited; Integration challenges exist for products

not specifically designed for the protocol, and auto‑discovery of complex data

structures is difficult; UDTs are transferred entirely from publisher to

subscriber, with no intrinsic selection capability; the rigid topic structure lacks

the flexibility and address space of OPC UA; Data contextualization is

constrained, limited to a few levels and largely dictated by the publisher.

Interfacing research and development requirements have shifted the PLC‑level

perspective. Phoenix Contact integrated MQTT, Sparkplug B, and OPC UA into

PLCnext technology, while current PLC equipment benefits from enhanced

interfacing through Node‑RED and Codesys. Companies such as Siemens and

Kunbus provide solutions (via IoT2000 series gateways for protocol conversion

and wrapping [K‑31], and Revolution Pi PLCs) capable of complex interfacing,

data structuring, and representation. These newer devices, whether PLCs or

gateways for legacy systems, often embed Node‑RED, which research

highlights as a PLC interfacing solution [193–194]. Beyond interfacing,

Node‑RED can support complete control strategies, including data structuring

and contextualization within the PLC. Node‑RED also enables graphical

representation of processes and components [195], [K‑1], a capability critical

for Industry 5.0, emphasizing efficiency, human‑centricity, sustainability, and

resilience. Traditionally, automation/SCADA setups involve local panels with a

PLC and HMI, requiring licensing, proprietary development environments, and

163

additional tasks. Higher SCADA levels in OT introduce further HMI

requirements and OPC UA interfacing, often with multiple HMI/SCADA systems

(e.g. [196] shows additional equipment efficiency supervision in Ignition

SCADA). These systems typically lack unitary structuring and

contextualization, while incurring separate licensing, development, and

maintenance costs. Industrial practice and research trends highlight the need

for impactful solutions. Leveraging Ignition SCADA’s effectiveness and

Node‑RED’s PLC‑level capabilities offer benefits: implementing process

control, data structuring/contextualization, supervision strategies directly at

the PLC level, while propagating structured data and graphical representations

to SCADA via OPC UA, without requiring supplementary SCADA development.

5.2.2 Proposed Solution

The proposed solution primarily targets the OT level, while ensuring that

structured and contextualized data also reaches the IT level. Structured

instances and attributes are generated at the PLC level in Node‑RED and

encapsulated within the OPC UA protocol. On the OPC UA client side,

represented by Ignition SCADA, the data is accessed and visualized through

the corresponding processing module. The targeted OT architecture (Fig.

5.2-1) assures control the local process at the PLC level, which is approached

in two ways (modern PLCs supporting IIoT environments such as Node‑RED

with data packed in OPC UA, or legacy PLCs with gateways/wrappers).

Fig. 5.2-1 System architecture on the OT level

164

At the SCADA level, the OPC UA server provides access to structured instances

within the address space. Processing modules in Ignition retrieve these

instances and depict the complete structure, including graphical

representations, without requiring additional synoptic scheme development.

Other HMIs, whether based on Ignition or Node‑RED, can interface and

subscribe to the exposed instances via OPC UA with minimal effort, or

alternatively access the full Node‑RED dashboard through a local browser.

The solution follows a two‑step approach, with the implemented data workflow

presented in Fig. 5.2-2, integrating Node-RED and Ignition through OPC UA.

Fig. 5.2-2 System architecture on the OT level

The first step involves defining the data structure in Node‑RED, which

communicates directly with field devices, polling data and publishing it to the

OPC UA server. Node‑RED also functions as an independent dashboard,

offering live monitoring of process variables through built‑in web visualization

tools without additional software. In the initial phase, data is organized into

logical groups before publication. The processed dataset encapsulates both

behavioral parameters (real‑time values) and structural parameters (graphical

representations, location, dimensions), categorized numerically for

165

standardized OPC UA integration. Visualization employs SVG elements to

represent monitored components. This approach enables dynamic updates by

embedding color‑coded attributes linked to behavioral data, reflecting

real‑time status. SVG’s XML foundation ensures flexible manipulation while

preserving hierarchical structure, position, size, color attributes, eliminating

the need to redraw components during updates. The final dataset is integrated

into the OPC UA framework, which offers features absent in Sparkplug B, such

as address‑space subscriptions, flexible structures, methods, robustness, and

protocol‑level security (encryption and authentication).

The second step is represented by the Ignition client, acting as consumer and

visualization engine. Structured data received via OPC UA is transformed into

a dynamic user interface through two complementary functions:

- Automatic creation of UDTs, organizing process parameters in a

standardized, scalable manner.

- Independent UI rendering, querying structured data to generate

components, allowing modifications without altering the structure.

UDTs are created dynamically by detecting available server nodes and

retrieving their values. Each UDT represents a specific component, grouping

tags rather than treating them individually. This automatic process ensures

continuous updates when new data is added, providing a scalable and adaptive

system. Once instantiated, a UDT structure is highlighted in Fig. 5.2-3.

Fig. 5.2-3 UDT Instance

At this stage, the user interface is dynamically generated once a window

component is provided. The automatic process follows two steps: first, the

complete UDT structure is retrieved and its components separated into

numeric values, operational states, and graphical elements; second, these

components are created and placed within the UI. Existing elements are only

updated rather than rebuilt. During UI creation, parameters are iterated and

type‑verified. Numeric values trigger automatic generation of text fields with

real‑time display and measurement units. States are represented by

multi‑state display elements, with text and color linked to the corresponding

state. Labels and descriptors are also dynamically created to provide

contextual information. The use of SVGs enables dynamic generation of

graphical elements representing physical components. Their hierarchical,

166

self‑contained structure eliminates the need for additional rendering

techniques, while properties such as position, size, color can be modified.

5.2.3 Case Study and Results for Node-RED to Ignition Data Propagation using OPC UA

The case study is based on a PLC‑level Node‑RED development that exposes

structured data through the OPC UA server, and a SCADA‑level Ignition

implementation that accesses these structured instances via its embedded

OPC UA client. Ignition then automatically deploys the selected data and its

graphical representation within the SCADA diagram. The Node‑RED to Ignition

data flow architecture is illustrated in Fig. 5.2-4. Both PLC level approaches

can be observed, with the newer PLCs embodying Node-RED, and also legacy

PLCs with legacy protocols augmented with the gateway/wrapper equipment.

Fig. 5.2-4 Case study Node-RED to Ignition OPC UA data flow architecture

The case study examines a control valve within a technological process. The

valve operates in five states: open, closed, opening, closing, and faulted. It

provides also the degree of opening, expressed in percentage units (%). These

attributes are organized into a structured dataset. In addition to values and

contextual data, Node‑RED integrates a graphical template for the valve. The

template displays the valve’s current state name and degree of opening with

units, alongside an associated image. Color coding indicates the state (e.g.

green = open, grey = closed).

Tests confirm that valve instances generated at the PLC level are successfully

integrated and represented within the SCADA application. Fig. 5.2-5

illustrates the local Node‑RED scenario, where the valve transitions from the

open state to the closed state, subsequently entering the fault state. Fig.

167

5.2-5 a)-d) are showing the template instance on the Node-RED dashboard in

all states.

The instance is integrated into SCADA through a drag‑and‑drop process after

accessing the OPC UA server. Data is then automatically propagated and

graphically represented, flowing from the Node‑RED PLC level to the Ignition

SCADA level. The results associated to the scenario from Fig. 5.2-5 are

presented in the Ignition window in Fig. 5.2-6. Fig. 5.2-6 a)-d) illustrate the

instance template propagation within the Ignition window, depicting the

valve’s transition from open to closed, and subsequently to the fault state

From Fig. 5.2-5 and Fig. 5.2-6, the structured data and its graphical template

are correctly imported from Node‑RED into Ignition, updating dynamically

according to the local valve behavior.

a)

b)

c)

d)

Fig. 5.2-5 Valve template instance representation in the Node-RED dashboard - a) open, b) closing, c) close, d)
faulted.

a)

b)

c)

d)

Fig. 5.2-6 Valve template instance representation in the Ignition window - a) open, b) closing, c) close, d) faulted.

168

5.3 Solving and Completing Structured Bidirectional Data Propagation and

Representation in the Sparkplug B context, using Ignition and Node-RED.

Digital transformation, like other strategic concepts, advances through

incremental steps toward defined objectives, though the extent of

achievement and precision of vision remain variable. To align with Industry

4.0 and 5.0 paradigms [197], research must emphasize efficiency gains

alongside human-centered, sustainable, and resilient solutions. Since data

constitutes the foundation of digital transformation, its propagation across

hierarchical layers, spanning OT and IT, is critical. Each level presents distinct

requirements in terms of protocols and information availability, with OT

systems often subject to stricter security measures.

Rapid deployment and adoption in this context call for high-TRL, off-the-shelf

environments as research infrastructure. Designing robust architectures and

enhancing data interfacing and representation provide significant advantages.

Within this framework, Ignition [191] and Node-RED [196] exemplify flexible

platforms that support IIoT/IoT-driven digital transformation. Both

environments integrate modern standards such as Sparkplug B and OPC UA,

enabling scalable and interoperable solutions.

Broker-based EDA, emphasizing decoupled entities, increasingly dominate

strategies for single-source-of-truth (SSoT) approaches within Unified Virtual

Space (UVS) or Unified Namespace (UNS). With limited academic

involvement, most architectural evolution is driven by industry, often leading

to flawed comparisons between protocols such as MQTT and OPC UA.

Industrial practice highlights that MQTT payloads require higher-level

structuring through protocols like Sparkplug B or OPC UA [198], and certain

sectors demand distributed architectures with multiple UNSs.

The research addresses efficiency and Industry 5.0 objectives by ensuring

data is structured, contextualized, trusted, visually enriched, and propagated

across hierarchical levels. Template-based instances provide unified

perspectives of technological processes, enhancing human involvement in

decision-making and enabling decentralized AI under human guidance.

Structured SSoT data availability also strengthens resiliency and sustainability

by improving operational insight and maintenance interventions. Academic

validation remains essential to consolidate technologies, establish proper

timelines, and mitigate risks of proprietary dependence. The current third

stage of the research delivers a comprehensive Sparkplug B/MQTT solution,

enabling bidirectional, flexible, and contextualized data propagation across all

levels. Templates generated in Node-RED or Ignition are distributed to

consumers, who may also act as publishers, ensuring updated structures are

169

re-propagated. With built-in monitoring for traceability and security, the

solution supports transition toward digital passports for process components

while reducing SCADA development, maintenance, and HMI-related costs.

Legacy systems remain a significant challenge at the OT level. However, over

time, research and industrial development have established OPC UA as the

dominant protocol. This transition was neither smooth nor spontaneous,

requiring strong industry support alongside academic studies and

endorsements. Once its advantages were recognized, adoption accelerated

rapidly, resulting in widespread deployment of client–server OPC UA systems.

Although newer OPC UA publish–subscribe specifications have been developed

and studied, their integration into industrial devices has been slow. Instead,

industry trends increasingly favor Sparkplug B, driven by SCADA-level

implementations. OPC UA traditionally addressed higher OSI layers, extending

its publish–subscribe mechanisms to the transport layer via MQTT or UDP. In

contrast, Sparkplug B was designed from the outset around MQTT, promoting

a decoupled entity architecture. MQTT itself has gained dominance across IT-

level applications—both cloud-based and on-premises—despite persistent

legacy challenges [199]. It has also penetrated lower-level OT equipment such

as meters and transducers, and is strongly endorsed by leading companies as

a foundation for digital transformation. Literature consistently identifies MQTT

as one of the most advantageous technologies due to its simplicity, lightweight

design, and efficiency in constrained environments [200].

While protocol specifications continue to evolve, their practical impact depends

on full adoption within industrial products. Theoretical standards alone, even

when supported by SDKs such as open62541, remain insufficient without

commercial implementation. Current digital transformation efforts rely heavily

on off-the-shelf solutions, yet without academic validation and improvement,

progress is largely steered by industry influencers and existing systems. The

scarcity of research addressing a common language between OT and IT

exacerbates this issue, leaving product-owning companies to dictate directions

for manufacturing and related sectors. Consequently, the landscape remains

fragmented, with urgent demand for rapid deployment of digital

transformation modules.

Although Sparkplug B requires integration with Ignition to enable

straightforward UDT manipulation, Node-RED has emerged as a powerful IoT

environment bridging both OT and IT domains. With extensive interfacing and

data-handling capabilities, Node-RED plays a central role in digital

transformation. It is increasingly embedded in gateway products and PLCs,

while industries and developers rapidly expand its applications. By promoting

170

openness and avoiding proprietary lock-ins, Node-RED enhances

independence, resilience, sustainability, and human-centered system design.

Within this context, UNS/UVS concept is critical to SSoT architectures.

Positioned at the OT–IT convergence, UNS/UVS provides structured and

contextualized data for all consumers. High-TRL implementations typically rely

on MQTT brokers, requiring higher-level protocols to enrich raw payloads.

Sparkplug B combined with MQTT represents one of the dominant UNS

architectures, transmitting OT data independently of Purdue hierarchies.

Proper structuring of MQTT remains essential for interoperability, with

Sparkplug B offering a technology-oriented solution.

Beyond OT–IT convergence, UNS/UVS supports Industry 5.0 pillars of human

centricity, sustainability, and resilience. Graphical representations linked to

contextualized data enhance human centricity, providing unified process

knowledge and empowering personnel without requiring direct manipulation

of low-level infrastructure. Efficiency is achieved through reduced hardware,

licensing, and development costs, coupled with instant access to complete

process data. Openness and flexibility, ensured by environments such as

Node-RED, allow continuous evolution and bidirectional updates of tag values

and graphical interfaces. Such capabilities, whether implemented in Node-RED

or Ignition, represent novel contributions not yet fully explored in the

literature.

5.3.1 Solution Overview

The proposed solution employs an event-driven architecture built on

decoupled entities. At its core lies a UVS/UNS implemented through MQTT and

Sparkplug B, functioning as the SSoT. Within this framework, data are

structured and contextualized, ensuring consistency across all system

components. The shared information encompasses both functional attributes

and graphical representations of technological process objects, enabling

comprehensive interoperability and visualization.

As illustrated in Fig. 5.3-1, the architecture relies on a UVS/UNS core, where

standardized data exchange is enabled through the Sparkplug B protocol.

Edge-generated UDT instances, structured, contextualized, and graphically

represented, can be modified by authorized data producers and consumers,

with auditing procedures serving as initial steps toward digital passport

implementation. This design supports lightweight, event-driven, flexible, and

scalable information exchange across heterogeneous components.

171

Fig. 5.3-1 System architecture

At the OT layer, programmable logic controllers (PLCs) serve as the primary

components, either operating with Node-RED as middleware or functioning

directly as programmable environments (e.g. Phoenix Contact PLC, Revolution

Pi). This layer generates event-driven structured data and attributes, which

are routed into the UVS/UNS. Through Sparkplug B abstraction, contextual

information and real-time values are standardized regardless of source. Node-

RED thus acts as an OT-level force for UDT structuring and graphical

dashboard generation, while also functioning as an IT-level data consumer or

an OT-level SCADA entity, with capabilities to publish or modify data when

required.

Ignition is typically regarded as an OT SCADA-level component, though it is

increasingly deployed at the PLC level (e.g., Groov Epic) and within IT

environments [196]. It interacts with the UVS/UNS to read and write data,

supporting both process control and dashboard construction. Functional

information (e.g. dynamic process variables) and structural information (e.g.

UI definitions) are integrated as JSON objects, enabling dynamic modification

or creation of payloads for flexible dashboard reconfiguration without

disrupting process integrity. In parallel, Node-RED deployments build

172

dashboards and manage control tasks. Both Ignition and Node-RED operate

concurrently, replicating functionalities and subscribing to a unified

namespace. As a result, updates to process parameters and user interfaces

are consistently propagated, ensuring synchronized and current system views

across all components.

The implementation of the architecture was realized in two stages, with two

self-descripting entities, one in Node-RED and one in Ignition Perspective. The

implementation centers on bidirectional synchronization between Node-RED

and Ignition, both capable of generating template instances. Instance

definitions, comprising graphical components, structural values, and

metadata, are serialized into JSON payloads and propagated to the UNS.

Consumer environments subscribe to these payloads, reconstruct dashboards

upon changes, and act as secondary visualization layers. Once dashboards are

registered in the UNS, any modification is automatically serialized, published,

and synchronized across platforms, eliminating dependency on a single tool

and ensuring independent interoperability.

To move beyond static interfaces, dashboards are treated as structured data

objects. Each element, symbols, buttons, or indicators, is assigned metadata

describing type, tag, position, and dimension. Attributes are extracted at

runtime via the Document Object Model (DOM), with coordinates, bounding

boxes, and process parameter values systematically encoded into hierarchical

JSON objects. This serialization produces a digital twin of the dashboard,

transmitted as a Sparkplug B payload to the UNS, where it becomes accessible

to all subscribing entities capable of interpretation.

To strengthen industrial compliance and system robustness, a logging and

traceability mechanism was integrated for all components. Each structural

modification to a dashboard definition is recorded with its timestamp and

published to the UNS on a dedicated topic, ensuring auditable evidence of

changes. This functionality is particularly relevant in regulated industrial

contexts and represents an initial step toward the digital passport concept

[201]. The mechanism functions symmetrically across environments,

capturing both user-triggered and script-based events. These are serialized

into JSON entries and disseminated via MQTT, making traceability data

instantly available to consumers. Simultaneously, all records are stored in a

database, creating a historical archive for long-term auditing and analysis.

Each entry includes contextual details such as the originating platform (Node-

RED or Ignition) and precise timestamps, thereby clarifying authorship,

reducing ambiguity, and supporting troubleshooting.

173

From an operational perspective, the mechanism ensures compliance with

industry standards requiring auditable change records. By embedding

traceability data into the UNS alongside process and structural information,

the solution elevates its importance within the digital transformation

framework. The overall solution implementation is illustrated in Fig. 5.3-2.

Fig. 5.3-2 Functional diagram

5.3.2 Case Study and Results

The first case study demonstrates a PLC-level Node-RED development that

exposes structured and contextualized data into an MQTT-based UNS using

the Sparkplug B standard. An Ignition layer, acting as a Sparkplug B client,

consumes this data. Node-RED generates the datatype and initial instances,

while subscribers automatically deploy the structured payload, including

graphical diagram representations, into Perspective views. Data propagation

occurs only upon publisher-side changes, and any consumer may also act as

a publisher. Thus, Node-RED and Ignition function as both subscribers and

174

publishers, achieving bidirectional synchronization after initialization,

independent of the original data source.

The case study focuses on pump-related process data, including attributes

such as speed, pumped flow rate, measurement units, states, controls, and

faults. Four operational states (Word-type values 0–3) were defined, reflecting

common automation practices, with transitions linked to speed levels. Three

faults, over-temperature, over-current, and leakage, were encoded bit-wise

in Word tags. All data were associated with graphical representations and

published within the UNS as complete dashboard instances.

The scenario validated correct data generation and synchronization between

Node-RED and Ignition. As shown in Fig. 5.3-3, all elements, including the

graphical pump symbol, control button, and analog displays for speed and

flow, were consistently reproduced in Ignition. Real-time process values were

directly bound to Ignition tags, ensuring system-wide data consistency.

a) b)

Fig. 5.3-3 Pump UI representation in: a) Node-RED dashboard, b) Ignition Perspective view

The second scenario evaluated the system’s ability to propagate and respond

to structural modifications. In this demonstration, graphical elements in the

Node-RED dashboard, specifically the flow label and text field, were

repositioned downward. The updated JSON payload was then published by

Node-RED and, upon receipt, Ignition reprocessed the view.json file to update

its interface. As shown in Fig. 5.3-4, the flow display elements were correctly

repositioned within Ignition to match the Node-RED layout. No inconsistencies

were detected, confirming the synchronization mechanism’s effectiveness in

handling real-time structural changes.

The third scenario examined resizing operations, beginning with the

dimensions shown in Fig. 5.3-5. In this case, the speed label component was

resized within the Node-RED dashboard. The modification triggered

publication of a new JSON payload, which was subsequently ingested by

175

Ignition. The Ignition view accurately reflected the resized element,

preserving readability and structural coherence.

Across all tested scenarios, dynamic bindings to process data tags remained

intact and unaffected by structural changes, thereby ensuring consistent

functionality and maintaining data integrity throughout interface adaptations.

 a) b)

Fig. 5.3-4 Pump UI representation after increased spacing in: a) Node-RED dashboard, b) Ignition Perspective view

 a) b)

Fig. 5.3-5 Pump UI representation after item resize in: a) Node-RED dashboard, b) Ignition Perspective view

The final scenario proves bidirectional modification of the generating instance.

In earlier experiments, Node-RED acted as the template generator, with

changes propagated to Ignition. In this case, the instance was altered within

Ignition, which functioned as the publisher, while Node-RED consumed the

updated data. As shown in Fig. 5.3-6, the resized pump graphical descriptor

was successfully propagated back from Ignition to Node-RED. This confirms

that, regardless of the original data generator, both functional and graphical

representations can be modified by any subscriber with publishing rights.

The second case study is where Ignition serves as the initial instance

generator, exposing structured data to the UVS/UNS through its custom view

manipulation mechanism. To maintain consistency with earlier evaluations,

176

the first scenario verifies the correct generation of dashboards published by

Ignition Perspective and consumed in Node-RED. As shown in Fig. 5.3-7, all

elements were faithfully reproduced within Node-RED. Real-time process

values remained directly bound to Node-RED process tags, ensuring system-

wide data consistency.

 a) b)

Fig. 5.3-6 Representation after pump graphical descriptor increase in size: a) Ignition – now as publisher, b) Node-
RED - consumer

Fig. 5.3-7 UI representation in: a) Ignition
Perspective view, b) Node-RED dashboard

Fig. 5.3-8 UI representation after element reposition in: a)
Ignition Perspective view, b) Node-RED dashboard

To further validate the solution, structural modifications were applied within

the Ignition view by repositioning two template elements, the “Power”

indicator shifted from right to left, and the command button placed beneath

the pump descriptor. As shown in Fig. 5.3-8, the Node-RED dashboard

accurately mirrored these changes, confirming correct synchronization of

structural updates between environments.

177

The resizing experiment began with the user interface shown in Fig. 5.3-9,

where the dimensions of the right-side textboxes were modified. These

changes were captured by the synchronization mechanism, serialized, and

transmitted to the UNS. Node-RED successfully consumed the updated

payload and accurately rendered the resized elements.

Fig. 5.3-9 UI representation after resizing in: a) Ignition Perspective view, b) Node-RED dashboard

Beyond synchronization, a key requirement of the implementation is the

traceability mechanism, serving as a foundation for a software-based digital

passport within the UVS/UNS. In this scenario, every template modification

triggers a log entry identifying the authoring platform (Node-RED or Ignition)

and its timestamp. These traces are published to the UNS, with examples

shown in Fig. 5.3-10. For long-term auditing, all records are persisted in a

dedicated database, with PostgreSQL selected for this case.

Fig. 5.3-10 JSON payload containing traceability data

The traceability mechanism was evaluated for the tested scenarios.

Modification within instances descriptors were logged and reflected into the

database. Traces are shown in Fig. 5.3-11 for auditing as database entries.

178

Fig. 5.3-11 Database table containing historical traceability data

When addressing solutions involving graphical data transmission, latency

considerations must be evaluated. The proposed approach employs Sparkplug

B to transmit structured, contextualized, and graphically enriched data, with

time-based measurements used to assess viability. Two aspects are central:

the impact of rendering and the overhead introduced by graphical descriptors

in transmission. Latency measurements across all experiments showed that

data transmission times were consistent in both case studies, regardless of

the publisher. However, rendering durations were consistently higher in Node-

RED compared to Ignition. Accordingly, results are reported in the worst-case

scenario, with rendering performed in Node-RED. Figures 5.3-12 and 5.3-13

illustrate comparative cases of data transmission with and without rendering,

confirming that rendering contributes approximately 5–6ms to overall latency.

Fig. 5.3-12 UDT transmission without Node-RED rendering

Fig. 5.3-13 UDT transmission with Node-RED rendering

Figures 5.3-14 and 5.3-15 are depicting comparatively situations where data

instances are transmitted with and without graphical descriptors. It can be

observed that the graphical representation weights under 1 ms.

179

Fig. 5.3-14 Transmission latency without graphical representation

Fig. 5.3-15 Transmission latency with graphical representation

180

6 Scientific and academic development directions

The current chapter presents briefly the scientific and teaching plan within the

Automation and Applied Informatics Department. The subsequent progression

of the academic career encompasses both the didactic and the scientific

research components, with the two elements being intrinsically correlated.

6.1.1 Teaching Development Plan

The development of the teaching career aims at to continuously enhance

specialty competencies, as well as psycho-pedagogical and managerial skills.

The didactic activity will be underpinned by the following components:

- Continuous improvement and updating of course and laboratory support

materials for the subjects that are taught.

- Diversification and continuous improvement of teaching methodologies,

including interactive and collaborative methods, team-based learning,

and group learning.

- Creation of new laboratory works and systems.

- Enhancement of laboratory infrastructure for the disciplines:

"Automation Elements," "Industrial Internet of Things (IIoT),", "SCADA

- Industrial Solutions for Data Acquisition and Supervisory Control.", etc.

This will be achieved through involvement in drafting financing

applications for non-reimbursable structural funds and securing

sponsorships from relevant industry companies.

Actions have already been undertaken to improve the teaching

infrastructure, being an essential aspect of the taught domains. The

infrastructure has to continuously improve to be able to cope with

industrial evolution and new perspectives.

- Drafting of two academic books in the fields of Industrial Internet of

Things and SCADA.

- Drafting a tutorial regarding conceptual and practical approach of Digital

Transformation.

- Proposing new disciplines in a close connection with the industry,

especially for graduate level studies, and creating corresponding course

and laboratory materials.

- Continuation of existing collaborations and establishment of new

partnerships with specialized companies and organizations to support

didactic activities, organize meetings and workshops involving students,

181

and facilitate practical training (internships) and the supervision of

bachelor's and master's theses.

- Supervision of Bachelor and Master Theses within the approached

research domains.

- Coordinating Doctoral students.

- Guidance of master students within the research programs related to

the corresponding programmes.

- Mentoring students in drafting research papers and participating in

national and international scientific events.

- Participation in continuous professional development courses and

knowledge enhancement programs, organized by both higher education

institutions and in collaboration with specialized companies.

- Participation in teaching internships with universities abroad.

6.1.2 Research Development Plan

The research directions in the following period will be in close connection with

Industry 4.0, 5.0, Digital Transformation, Artificial Intelligence, Digital Twin

and IIoT domains. Contributions are foreseen on the Operational Technology

level, and on the Operational Technology connection with Information

Technology level. Efficiency increase related studies will be made in close

correlation with achieving Industry 5.0 pillars. Studies will be made to increase

the edge level processing and the corresponding security level. The

approached industries will be the water sector and the manufacturing.

The scientific activity will be based on the following components:

- Dissemination of research outcomes through the publication of scientific

papers in specialized journals and conference proceedings, and

participation in scientific events such as international conferences and

exhibitions. Specifically, I will publish a minimum of two articles per year

in ISI Web of Science indexed scientific journals, preferably those with

a minimum impact factor of 0.5, and a minimum of one article per year

in the proceedings of international conferences indexed in recognized

international databases (e.g., IEEE, Scopus, Dblp).

Furthermore, by attending international conferences annually, I aim to

disseminate research results, exchange experiences, and share

information with other researchers in the field. This scientific activity will

thus contribute to enhancing the prestige of the Department of

182

Automation and Applied Informatics, the Faculty of Automation and

Computer Engineering, and the Politehnica University of Timișoara.

- Participation in the editorial boards of scientific journals and in the

Scientific and Organizing Committees of international conferences.

- Realizing reviewing activities for Web-of-Science indexed international

journals and for conferences.

- Participating in the evaluation activity for European research and

development projects.

- Writing project proposals and participating in working groups for

drafting national and international research project proposals. Scientific

research will be sustained and continued by obtaining funding following

the submission of project proposals in national funding competitions, as

well as by participating with foreign partners in drafting and submitting

project proposals in international competitions.

Undertaking research and development projects for the industry,

especially in the digital transformation, IIoT and AI domains.

- Accomplishing research objectives within work packages of research

projects (e.g. HRIA – Romanian Hub for Artificial Intelligence).

The two components (teaching and researching) of subsequent career

development are intrinsically correlated, as the results obtained from research

activities (including studies, methods, models, and technologies), especially

those in close connection with the industry, will contribute to the continuous

updating of curricula, course materials, and other didactic support resources

for the disciplines. One of the objective in the research and development

projects is to involve graduate and undergraduate students in the activities,

to be able to elevate the quality of their theses, and to provide them an

approach towards understanding and elaboration of scientific works.

The development of my academic career is based on the following set of core

values: openness to novelty, orientation towards applied research and

learning, collaborative study, collegiality, and respect. My academic career

development plan aims at raising the standards of academic and professional

excellence, as well as fostering collaboration with colleagues and researchers

in the field of systems engineering or related disciplines.

183

References

[K-1] Korodi A., Vesa V.C., Solving and Completing Structured Bidirectional Data

Propagation and Representation in the Sparkplug B context, using Ignition and Node-

RED, submitted to Journal, 2025

[K-2] Chisalita A.I., Korodi A. Stepping towards Zenoh Protocol in Automotive Scenarios.

IEEE Access. Sept. 2025

[K-3] Korodi A., Vesa V.C., Dontu R.A., Human Centered Industry 5.0 Data Representation

in the context of Technology Driven Digital Transformation Interfacing, Proc. of the

23rd IEEE Int. Conference on Industrial Informatics (INDIN), Kunming, China, 2025

[K-4] Korodi A., Vesa V.C., Dontu R.A., Efficient and Human Centered Industry 5.0 Data

Propagation on the Operational Technology Level. Case Study with OPC UA Interfacing,

Node-RED and Ignition., Proc. of the 21st International Conference on Automation

Science and Engineering (IEEE CASE), Los-Angeles, USA, 2025

[K-5] Nitulescu I.V., Korodi A., Curiac D.I., Contribution Study for Digital Transformation in

the Context of Legacy IT Level Asset Management Systems, Proc. of the 25th Int.

Conf. on Control Systems and Computer Science (CSCS), Bucharest, Romania, 2025

[K-6] Dontu R.A, Korodi A., Integrated IoT Solution Targeting Cloud-based Infrastructures

for Digital Transformation using MQTT over JSON Protocol, Proc. of the 25th Int. Conf.

on Control Systems and Computer Science (CSCS), Bucharest, Romania, 2025

[K-7] A. Korodi, A. Nicolae, D. Brisc, I. Drăghici and A. Corui, "Long Short-Term Memory-

Based Prediction Solution Inside a Decentralized Proactive Historian for Water Industry

4.0," IEEE Access, vol. 12, pp. 99526-99536, 2024, doi:

10.1109/ACCESS.2024.3428866.

[K-8] Korodi, A.; Nițulescu, I.-V.; Fülöp, A.-A.; Vesa, V.-C.; Demian, P.; Braneci, R.-A.;

Popescu, D. Integration of Legacy Industrial Equipment in a Building-Management

System Industry 5.0 Scenario. Electronics 2024, 13, 3229.

https://doi.org/10.3390/electronics13163229

[K-9] Ungureanu, V.-I.; Negirla, P.; Korodi, A. Image-Compression Techniques: Classical

and “Region-of-Interest-Based” Approaches Presented in Recent Papers. Sensors

2024, 24, 791. https://doi.org/10.3390/s24030791

[K-10] Mateoiu, A.-M.; Korodi, A.; Stoianovici, A.; Tira, R. Supervisory Monitoring and Control

Solution on Android Mobile Devices for the Water Industry 4.0. Sustainability 2023,

15, 16022. https://doi.org/10.3390/su152216022

[K-11] Tidea, A; Korodi, A.; ECC Implementation and Performance Evaluation for Securing

OPC UA Communication, Proc. of the 22nd IEEE International Conference on Trust,

Security and Privacy in Computing and Communications (TrustCom-2023), pp. 1712-

1719, Exeter, UK, 2023

[K-12] Korodi, A.; Nicolae, A.; Drăghici, I.A. Proactive Decentralized Historian-Improving

Legacy System in the Water Industry 4.0 Context. Sustainability 2023, 15, 11487.

https://doi.org/10.3390/su151511487

[K-13] Tidrea, A.; Korodi, A.; Silea, I. Elliptic Curve Cryptography Considerations for Securing

Automation and SCADA Systems. Sensors 2023, 23, 2686.

https://doi.org/10.3390/s23052686

[K-14] A. Nicolae, C. Burlacu, A. Stanciu, A. Korodi, B. Poşa and F. Mihaila, "An Industry 4.0

Oriented Predictive Maintenance Solution Deployed in Real-World Automotive

Manufacturing Facilities," 2023 24th International Conference on Control Systems and

Computer Science (CSCS), Bucharest, Romania, 2023, pp. 99-104, doi:

10.1109/CSCS59211.2023.00025.

https://doi.org/10.3390/s24030791
https://doi.org/10.3390/su152216022
https://doi.org/10.3390/su151511487

184

[K-15] Ioana, A.; Korodi, A.; Silea, I. Automotive IoT Ethernet-Based Communication

Technologies Applied in a V2X Context via a Multi-Protocol Gateway. Sensors 2022,

22, 6382. https://doi.org/10.3390/s22176382

[K-16] Ioana A, Korodi A. DDS and OPC UA Protocol Coexistence Solution in Real-Time and

Industry 4.0 Context Using Non-Ideal Infrastructure. Sensors 2021, 21, 7760.

[K-17] Nicolae A, Korodi A, Silea I. Complete Automation of an Energy Consumption Reduction

Strategy from a Water Treatment and Distribution Facility, Inside an Industrial Internet

of Things-Compliant Proactive Historian Application. Sensors. 2021; 21(7):2569.

[K-18] Ioana A, Burlacu C, Korodi A. Approaching OPC UA Publish–Subscribe in the Context

of UDP-Based Multi-Channel Communication and Image Transmission. Sensors. 2021;

21(4):1296.

[K-19] Ioana A, Korodi A. Improving OPC UA Publish-Subscribe Mechanism over UDP with

Synchronization Algorithm and Multithreading Broker Application. Sensors. 2020;

20(19):5591.

[K-20] Korodi A, Anitei D, Boitor A, Silea I. Image-Processing-Based Low-Cost Fault Detection

Solution for End-of-Line ECUs in Automotive Manufacturing. Sensors. 2020;

20(12):3520.

[K-21] Ioana A, Korodi A. OPC UA Publish-Subscribe and VSOME/IP Notify-Subscribe Based

Gateway Application in the Context of Car to Infrastructure Communication. Sensors.

2020; 20(16):4624.

[K-22] Nițulescu I-V, Korodi A. Supervisory Control and Data Acquisition Approach in Node-

RED: Application and Discussions. IoT. 2020; 1(1): 76-91.

[K-23] Korodi A., Crisan R., Nicolae A., Silea I. ”Industrial Internet of Things and Fog

Computing to Reduce Energy Consumption in Drinking Water Facilities”. Processes

2020, 8, 282.

[K-24] Nicolae, A.; Korodi A.; Silea, I. Weather-Based Prediction Strategy inside the Proactive

Historian with Application in Wastewater Treatment Plants. Appl. Sci. 2020, 10, 3015.

[K-25] Ungureanu, V.-I.; Miclea, R.-C.; Korodi, A.; Silea, I. A Novel Approach against Sun

Glare to Enhance Driver Safety. Appl. Sci. 2020, 10, 3032.

[K-26] Nicolae A., Korodi A., Silea I., „An Overview of Industry 4.0 Development Directions

in the Industrial Internet of Things Context”, Romanian Journal of Information Science

and Technology (ROMJIST), vol. 22, issue 3-4, pp. 183–201, 2019

[K-27] Tidrea A., Korodi A., Silea, „Cryptographic Considerations for Automation and SCADA

Systems using Trusted Platform Modules”, Sensors, vol. 19, issue 19, 2019

[K-28] Nicolae A., Korodi A., Silea I., „Identifying Data Dependencies as First Step to Obtain

a Proactive Historian: Test Scenario in the Water Industry 4.0”, Water, 11/1144, 2019.

[K-29] Petre C.A., Korodi A., "Honeypot Inside an OPC UA Wrapper for Water Pumping

Stations", Proceedings of the 22nd International Conference on Control Systems and

Computer Science (CSCS), Bucharest, Romania, 28-30 May 2019

[K-30] Ioana A., Korodi A., "VSOMEIP - OPC UA Gateway Solution for the Automotive

Industry", Proc. of the International Conference on Engineering, Technology and

Innovation, Sophia Antipolis, France, 17-19 June, 2019

[K-31] Toc S.I., Korodi A., ”Modbus-OPC UA Wrapper using Node-RED and IoT-2040 with

application in the water industry”, Proc. of the 16th IEEE International Symposium on

Intelligent Systems and Informatics (SISY), Subotica, Serbia, September 13-15, 2018

[K-32] Korodi A., Radu M.A., Crisan R., ”Non-Invasive Control Solution inside Higher-Level

OPC UA based Wrapper for Optimizing Groups of Wastewater Systems”, Proceedings

of the IEEE 23rd International Conference on Emerging Technologies and Factory

Automation (ETFA), Torino, Italy, September 4-7, 2018.

185

[K-33] Nicolae A., Korodi A., „Node-Red and OPC UA Based Lightweight and Low-Cost

Historian with Application in the Water Industry”, Proc. of the 16th IEEE International

Conference on Industrial Informatics (INDIN), Porto, Portugal, July 18-20, 2018.

[K-34] Tidrea A., Korodi A., „WebNavIGSS Web-Based Software Solution for IGSS SCADA

Applications”, Proceedings of the 26th Mediterranean Conference on Control and

Automation (MED), Zadar, Croatia, June 19-22, 2018

[K-35] Mateoiu A., Korodi A., OPC-UA based small-scale monitoring and control solution for

Android devices. Case study for water treatment plants.”, Proceedings of the 4th

International Conference on Control, Automation and Robotics (ICCAR 2018),

Auckland, New Zealand, April 20-23, 2018

[K-36] Crisan R., Korodi A., „Noninvasive Control Solution for Energy Efficiency in Wastewater

Treatment Plants”, Proceedings of the 19th International Conference on Industrial

Technology (ICIT), Lyon, France, pp. 1604-1609, February 20-22, 2018

[K-37] Nicolae A., Korodi A., Silea I., „Modular and model-driven configurable approach for a

centralized home-security system”, Proceedings IEEE 12th International Symposium

on Applied Computational Intelligence and Informatics (SACI 2018), Timisoara,

Romania, May 17-19, 2018

[K-38] Korodi A., Silea I., ”Achieving Interoperability Using Low-Cost Middleware OPC UA

Wrapping Structure. Case Study in the Water Industry”, Proc. of the 15th IEEE

International Conference on Industrial Informatics (INDIN), Emden, Germany, pp.

1223-1228, 24-26 July, 2017

[K-39] Korodi A., Huple T., Silea I., Stefan O., “IGSS Higher-Level SCADA Optimal Resource

Allocation to Integrate Water and Waste Water Pumping Stations”, Proc. of the 21th

International Conference on Control Systems and Computer Science, pp. 93-98,

Bucharest, Romania, 29-31 May 2017

[K-40] Korodi A., Silea I., „Specifying and Tendering of Automation and SCADA Systems:

Case Study for Waste Water Treatment Plants”, Proc. of the IEEE Conference on

Control Applications (CCA), part of the IEEE Multi-Conference on Systems and Control

(MSC 2014), Antibes, France, October, 2014

[K-41] Korodi A., „Building a Knowledge Base to Obtain the Maximum Power Point for a PV

panel”, Proceedings of the IEEE Conference on Control Applications (CCA), part of the

IEEE Multi-Conference on Systems and Control (MSC 2012), ISBN 978-1-4673-4504-

0, pp. 1098-1103, Dubrovnik, Croatia, October, 2012

[K-42] Dragomir T. L., Petcuţ F. M., Korodi A., “Reference Value Generator of Maximum Power

Point Coordinates of the Photovoltaic Panel External Characteristic”, New Concepts and

Applications in Soft Computing - Studies in Computational Intelligence, vol. 417, pp.

71-96, Springer, 2012

[K-43] Korodi A., Petcut F.M., Dragomir T.L., „Interpolative Based Implementation of a

Photovoltaic Panel”, Proceedings of the 19th Mediterranean Conference on Control and

Automation, ISBN 978-1-4577-0124-5, pp. 345-350, Corfu, Greece, June 20-23, 2011

[K-44] Stanciu M.C., Korodi, A., „The Social Marginalization of the Elderly - Probabilistic

Analysis through Markov Models”, Procedia - Social and Behavioral Sciences, Elsevier,

vol. 46, pp. 504-508, 2012

[K-45] Korodi A., Codrean A., Timofte A., Dragomir T.L., „Cardiovascular Model with Human

Elastance Function and Valve Dynamics”, Proceedings of the 20th Mediterranean

Conference on Control and Automation, MED 2012, ISBN 978-1-4673-2529-5, pp.

1421-1427, Barcelona, Spain, July, 2012

[K-46] Codrean A., Korodi A., Dragomir T.L., Kovacs L., “Up to Date Issues on Modeling the

Nervous Control of the Cardiovascular System on Short-Term”, Proceedings of the

186

18th IFAC World Congress, ISBN 978-3-902661-93-7, pp. 3747-3752, Milan, Italy, 28

Aug. - 2 Sept., 2011

[K-47] Codrean A., Korodi A., Jiveț I., T.L. Dragomir, “Developing a Lumped Model for the

Vestibular Receptors”, ISBN 978-3-642-22586-4, Proceedings of the Advancements of

Medicine and Health Care through Technology, pp. 260-265, Cluj-Napoca, Romania,

29 Aug. – 2 Sept., 2011

[K-48] Codrean, A., Korodi A., Dragomir, T.L., Ceregan V., ”Modeling the Vestibular Nucleus”,

Lecture Notes in Electrical Engineering - Journal of Intelligent Control and Computer

Engineering, Springer, vol. 70, pp. 293-306, 2011

[K-49] Codrean A., Ceregan V., Dragomir, T.L., Korodi A., “Interpolative frequency

characteristics generators for the Vestibular Nucleus Activity”, Proc. of the IAENG Int.

Conf. on Bioinformatics, Hong Kong, vol. 1, pp. 195-199, ISBN 978-988-17012-8-2,

ISSN 2078-0958 (print), 18-20 March, 2010

[K-50] Korodi A., Ceregan V., Dragomir, T.L., Codrean A. “A Continuous-Time Dynamical

Model for the Vestibular Nucleus”, Proc. of the 12th Mediterranean Conference on

Medical and Biological Engineering and Computing - IFMBE MEDICON 2010, pp. 627-

630, Publisher Springer Berlin Heidelberg, ISSN1680-0737 (Print), 1433-9277

(Online), Chalkidiki, Greece, 27-30 May, 2010

[K-51] Ceregan V., Korodi A., Dragomir, T.L., Codrean A. “An Adaptive Interpolative Based

Model for the Vestibular Nucleus”, Proc. of the IEEE Int. Joint Conf. on Computational

Cybernetics and Technical Informatics – ICCC-CONTI 2010, pp. 31-36, Timisoara,

Romania, 27-29 May, 2010

[K-52] Korol T., Korodi A., ”An Evaluation of Effectiveness of Fuzzy Logic Model in Predicting

the Business Bankruptcy”, Romanian Journal of Economic Forecasting, vol. 14, issue

3, pp. 92-107, 2011

[K-53] Korol, T., Korodi A., ”Predicting bankruptcy with the use of macroeconomic variables”,

Journal of Economic Computation and Economic Cybernetics Studies and Research,

vol. 44/1, pp. 201-220, 2010

[K-54] Korodi A., Corman I. M., „Wheeled Mobile Robot Model and Cooperative Formation

Control” WSEAS Transactions on Systems - Special Issue on Collaborative Systems,

vol. 11, 2012

[K-55] Korodi A., Dragomir, T.L., ”Correcting Odometry Errors for Mobile Robots Using Image

Processing”, Proceedings of the IAENG International Conference on Control and

Automation, Hong Kong, vol. 2, pp. 1040-1045, 18-20 March, 2010 – Awarded with

the Certificate of Merit

[K-56] Korodi A., Dragomir T.L., „Availability Studies and Solutions for Wheeled Mobile

Robots”, Lecture Notes in Electrical Engineering - Intelligent Control and Computer

Engineering, Springer, vol. 70, pp. 47-58, 2011

[K-57] Korodi A., Codrean A., Banita L., „Aspects Regarding the Object Following Control

Procedure for Wheeled Mobile Robots”, WSEAS Trans. on Systems and Control, Issue

6, vol. 3, pp. 537-546, ISSN 1991-8763, June, 2008

[K-58] Korodi A., Codrean A., Banita L., Butaru A., Carnaru R., „Object Following Control for

Wheeled Mobile Robots”, Proc. of the 9th WSEAS Int. Conf. on Automation and

Technical Information ICAI, pp. 338-343, ISBN 978-960-6766-77-0, ISSN 1790-5117,

Bucharest, Romania, June 24-26, 2008

[K-59] Korodi, A., Huple T., Automation Elements – Applications 1, Programming Panasonic

PLC and HMI – IGSS and Ignition SCADA Development, Edit. Politehnica, 206 pages,

978-606-554-996-8, Timisoara, 2015

187

[K-60] Korodi, A., Robu, R., Pintea, R., Computer Programming – Applications, Edit.

Politehnica, 133 pages, ISBN 978-973-625-649-3, Timisoara, 2008

[1] E. Moraes, H. Lepikson, S. Konstantinov, “Improving connectivity for runtime simulation

of automation systems via OPC UA”, Proc. of the 13th IEEE International Conf. on

Industrial Informatics (INDIN), 2015

[2] S. Wredea, O. Beyerb, C. Dreyera, “Vertical Integration and Service Orchestration for

Modular Production Systems using Business Process Models”, Procedia Technology 26 -

The 3rd Int. Conf. on System-integrated Intelligence, SysInt, pp. 259-266, 2016.

[3] C. Bergera, A. Heesa, S. Braunreuthera, G. Reinhart, “Characterization of Cyber-Physical

Sensor Systems”, Proc. CIRP 41, pp. 638 – 643, 2016

[4] I. Seilonen, T. Tuovinen, et.al., “Aggregating OPC UA servers for monitoring

manufacturing systems and mobile work machines”, Proc. of IEEE 21st International

Conference on Emerging Technologies and Factory Automation (ETFA), 2016

[5] M.V. García, E. Irisarri, et.al., “Plant floor communications integration using a low cost

CPPS architecture”, Proc. of the IEEE 21st Int. Conf. on Emerging Technologies and

Factory Automation (ETFA), 2016

[6] V.H. Nguyen, Q.T. Tran, Y. Besanger, "SCADA as a service approach for interoperability

of micro-grid platforms", Sustainable energy grids & networks, vol. 8, pp. 26-36, 2016

[7] P.A. Nyen, E. Polanscak, O. Roulet-Dubonnet, et.al., “Distributed, autonomous control

in production of jet turbine parts”, Proc. of the 6th CIRP Conf. on Learning Factories,

vol. 54, pp. 191-196, Norway, 2016

[8] N.C. Gaitan, “MCIP Client Application for SCADA in Iiot Environment”, International

Journal of Advanced Computer Science and Applications, 6/ 9, pp. 158-163, 2015

[9] P. Drahos, E. Kucera, O. Haffner, I. Klimo, “Trends in industrial communication and OPC

UA”, Proceedings of the International Conference on Cybernetics & Informatics (K&I),

pp. 1-5, Lazy pod Makytou, Slovakia, 28 Ian.-03 Feb., 2018

[10] M. Graube, S. Hensel, C. Iatrou, L. Urbas , "Information models in OPC UA and their

advantages and disadvantages", Proceedings of the 22nd IEEE Int. Conf. on Emerging

Technologies and Factory Automation (ETFA), Limassol, Cyprus, 12-15 Sept. 2017

[11] H. Haskamp, M. Meyer, R. Mollmann, F. Orth, A. Colombo, “Benchmarking of existing

OPC UA implementations for Industrie 4.0-compliant digitalization solutions”, Proc. of

the 15th IEEE Intern. Conf. on Ind. Info. (INDIN), Emden, Germany, pp. 589-594, 24-

26 July, 2017

[12] S. Cavalieri, A. Regalbuto, “Integration of IEC 61850 SCL and OPC UA to improve

interoperability in Smart Grid environment”, Computer Standards & Interfaces, vol. 47,

pp. 77-99, Aug. 2016

[13] M. Muller, E. Wings, L. Bergmann, “Developing Open Source Cyber-Physical Systems for

Service-Oriented Architectures Using OPC UA”, Proc. of the 15th IEEE Intern. Conf. on

Ind. Info. (INDIN), Emden, Germany, pp. 83-88, 24-26 July, 2017

[14] A. Veichtlbauer, M. Ortmayer, T. Heistracher, “OPC UA Integration for Field Devices”,

Proc. of the 15th IEEE Intern. Conf. on Ind. Info. (INDIN), Emden, Germany, pp. 419-

424, 24-26 July, 2017

[15] H. Derhamy, J. Ronnholm, J. Delsing, J. Eliasson, J. van Deventer, “Protocol

interoperability of OPC UA in Service Oriented Architectures”, Proc. of the 15th IEEE

Intern. Conf. on Ind. Info. (INDIN), Emden, Germany, pp. 44-50, 24-26 July, 2017

[16] A. Ismail, W. Kastner, "Throttled service calls in OPC UA", Proceedings of the IEEE Int.

Conf. on Industrial Technology (ICIT), pp. 1658 - 1663, Lyon France, Feb. 2018

188

[17] S. Cavalieri, D. Di Stefano, M.G. Salafia, M.S. Scroppo, "A web-based platform for OPC

UA integration in IIoT environment", Proceedings of the 22nd IEEE Int. Conf. on

Emerging Tech. and Factory Automation (ETFA), Limassol, Cyprus, 12-15 Sept. 2017

[18] M. Zarte, A. Pechmann, J. Wermann, F. Gosewehr, A.W. Colombo, "Building an Industry

4.0-compliant lab environment to demonstrate connectivity between shop floor and IT

levels of an enterprise", Proceedings of the 42nd Annual Conference of the IEEE

Industrial Electronics Society (IECON 2016), Florence, Italy, 23-26 Oct. 2016

[19] A. Balador, N. Ericsson, Z. Bakhshi, "Communication middleware technologies for

industrial distributed control systems: A literature review", Proceedings of the 22nd IEEE

International Conference on Emerging Technologies and Factory Automation (ETFA),

Limassol, Cyprus, 12-15 Sept. 2017

[20] F. S. Costa et al., “FASTEN IIoT: An Open Real-Time Platform for Vertical, Horizontal

and End-To-End Integration,” Sen-sors, vol. 20, no. 19, p. 5499, Sep. 2020, doi:

10.3390/s20195499.

[21] D. Baudouin, et.al.. (2021). The challenges, approaches, and used techniques of CPS

for manufacturing in Industry 4.0: a literature review. Int. J. of Adv. M.. Tec. 1-18.

10.1007/s00170-020-06572-4.

[22] Shakib, Kazi & Neha, Farhin. (2021). A Study for taking an approach in Industrial IoT

based Solution. Journal of Physics: Conference Series. 1831. 012007. 10.1088/1742-

6596/1831/1/012007.

[23] D. Simić, N. Saulic. “Logistics Industry 4.0: Challenges and Opportunities”. Business,

Computer Science, Engineering (2019).

[24] Orellana, Felipe & Torres, Romina. (2019). From legacy-based factories to smart

factories level 2 according to the industry 4.0. International Journal of Computer

Integrated Manufacturing. 32. 1-11. 10.1080/0951192X.2019.1609702.

[25] Ferrari, P. et.al. (2017). “Evaluation of communication latency in industrial IoT

applications.” IEEE Int. Workshop on Meas-urements and Networking Proceedings

(M&N), 1-6. 10.1109/IWMN.2017.8078359.

[26] Govindarajan, Naveen & Ramis, Borja & Xu, Xiangbin & Nieto, Norma & Martinez Lastra,

Jose Luis. (2016). An approach for integrating legacy systems in the manufacturing

industry. 683-688. 10.1109/INDIN.2016.7819247.

[27] Gogolev, A.; Mendoza, F.; Braun, R. TSN-Enabled OPC UA in Field Devices. IEEE 23rd

Int. Conf. on Emerging Technologies and Factory Automation (ETFA), Torino, Italy, 4–7

September 2018; pp. 297–303.

[28] Gogolev, A.; Braun, R.; Bauer, P. TSN Traffic Shaping for OPC UA Field Devices. 2019

IEEE 17th Int. Conf. on Industrial Informatics (INDIN), Helsinki, Finland, 2019, pp. 951-

956, doi: 10.1109/INDIN41052.2019.8972252.

[29] Haskamp, H.; Orth, F.; Wermann, J.; Colombo A.W. Implementing an OPC UA interface

for legacy PLC-based automation systems using the Azure cloud: An ICPS-architecture

with a retrofitted RFID system. 2018 IEEE Industrial Cyber-Physical Systems (ICPS), St.

Petersburg, 2018, pp. 115-121, doi: 10.1109/ICPHYS.2018.8387646.

[30] OPC. 10000-14-UA Specification Part 14 PubSub; OPC Foundation: Scottsdale, AR, USA,

1 April 2018

[31] Eckhardt, A.; Müller, S.; Leurs, L. An evaluation of the applicability of OPC UA Publish

Subscribe on factory automation use cases. In Proceedings of the IEEE 23rd

International Conference on Emerging Technologies and Factory Automation (ETFA),

Torino, Italy, 4–7 September 2018; pp. 1071–1074.

[32] Pfrommer, J.; Ebner, A.; Ravikumar, S.; Karunakaran, B. Open Source OPC UA PubSub

Over TSN for Realtime Industrial Communication. In Proceedings of the IEEE 23rd

189

International Conference on Emerging Technologies and Factory Automation (ETFA),

Torino, Italy, 4–7 September 2018; pp. 1087–1090, doi:10.1109/ETFA.2018.8502479.

[33] Available online: https://github.com/open62541/open62541.

[34] Peniak P.; Bubenikova E.; Spalek J. Model of Integration Gateway for Communication of

OPC/MQTT Devices. 2020 Cybernetics & Informatics (K&I), Velke Karlovice, Czech

Republic, 2020, pp. 1-5, doi: 10.1109/KI48306.2020.9039852.

[35] Available online: https://www.cirrus-link.com/mqtt-sparkplug-tahu (accessed on 2nd of

September 2020)

[36] AUTOSAR. SOME/IP Protocol Specification; AUTOSAR: Munich, Germany, 2016

[37] Vidal, I.; Bellavista, P.; Sanchez-Aguero, V.; Garcia-Reinoso, J.; Valera, F.; Nogales, B.;

Azcorra, A. Enabling Multi-Mission Interoperable UAS Using Data-Centric

Communications. Sensors 2018, 18, 3421.

[38] Youssef, T.A.; Esfahani, M.M.; Mohammed, O. Data-Centric Communication Framework

for Multicast IEC 61850 Routable GOOSE Messages over the WAN in Modern Power

Systems. Appl. Sci. 2020, 10, 848.

[39] L. Li, H. Zhu, et.al., TSN-Based Scheduling of Task-Network Co-Scheduling on In-Vehicle

Multi-Core System, Proc. of the 23rd IEEE International Conference on Industrial

Informatics (INDIN), Kunming, China, 2025

[40] Tarkoma, S. Publish/Subscribe Systems: Design and Principles, Wiley 1st Edition, 2012.

[41] Newman, W.S. A Systematic Approach to Learning Robot Programming with ROS.

Chapman and Hall/CRC, 2017.

[42] AUTOSAR. Requirements on Time Synchronization; AUTOSAR: Munich, Germany, 2019.

[43] Tang, S.; Zhu, Y.; Yuan, S.; Li, G. Intelligent Diagnosis towards Hydraulic Axial Piston

Pump Using a Novel Integrated CNN Model. Sensors 2020, 20, 7152.

[44] Na, K.-M.; Lee, K.; Shin, S.-K.; Kim, H. Detecting Deformation on Pantograph Contact

Strip of Railway Vehicle on Image Processing and Deep Learning. Applied Sciences 2020,

10, 8509.

[45] Stark, E.; Kučera, E.; Haffner, O.; Drahoš, P.; Leskovský, R. Using Augmented Reality

and Internet of Things for Control and Monitoring of Mechatronic Devices. Electronics

2020, 9, 1272.

[46] Yahiaoui, L.; Horgan, J.; Deegan, B.; Yogamani, S.; Hughes, C.; Denny, P. Overview

and Empirical Analysis of ISP Parameter Tuning for Visual Perception in Autonomous

Driving. J. Imaging 2019, 5, 78.

[47] Kang, S.; Chun, C.; Shim, S.;Ryu, S.; Baek, J. Real Time Image Processing System for

Detecting Infrastructure Damage: Crack. 2019 IEEE International Conference on

Consumer Electronics (ICCE), Las Vegas, NV, USA, 2019, pp. 1-3, doi:

10.1109/ICCE.2019.8661830.

[48] Tian, D.; Zhang, C.; Duan, X.; Wang, X. An Automatic Car Accident Detection Method

Based on Cooperative Vehicle Infrastructure Systems. IEEE Access, vol. 7, pp. 127453-

127463, 2019.

[49] Ahn, S.; Choi, J. Utilization of V2X Communications for Vehicle Queue Length Estimation.

2018 International Conference on Information and Communication Technology

Convergence (ICTC), Jeju, 2018, pp. 645-648, doi: 10.1109/ICTC.2018.8539574.

[50] Mathias, S. G.; Schmied, S.; Grossmann, D.; Müller, R. K.; Mroß, B. A Compliance

Testing Structure for Implementation of Industry Standards through OPC UA. 2020 25th

IEEE International Conference on Emerging Technologies and Factory Automation

(ETFA), Vienna, Austria, 2020, pp. 1091-1094.

190

[51] Eckhardt A.; Müller S. Analysis of the Round Trip Time of OPC UA and TSN based Peer-

to-Peer Communication. 2019 24th IEEE International Conference on Emerging

Technologies and Factory Automation (ETFA), Zaragoza, Spain, 2019, pp. 161-167.

[52] Cenedese A.; Frodella M.; Tramarin F.; Vitturi A. Comparative assessment of different

OPC UA open–source stacks for embedded systems. 2019 24th IEEE International

Conference on Emerging Technologies and Factory Automation (ETFA), Zaragoza, Spain,

2019, pp. 1127-1134.

[53] Initiative: Field Level Communications (FLC) OPC Foundation Extends OPC UA Including

TSN Down To Field Level. OPC Foundation Tech. Rep., February 2019.

[54] "OPC UA for Programmable Logic Controllers based on IEC61131-3", OPC Foundation

Tech. Rep., March 2010.

[55] Panda S. K.; Majumder M.; Wisniewski L.; Jasperneite J. Real-time Industrial

Communication by using OPC UA Field Level Communication. 2020 25th IEEE

International Conference on Emerging Technologies and Factory Automation (ETFA),

Vienna, Austria, 2020, pp. 1143-1146

[56] Li Y.; Jiang J.; Lee C.; Hong S. H. Practical Implementation of an OPC UA TSN

Communication Architecture for a Manufacturing System. IEEE Access, vol. 8, pp.

200100-200111, 2020.

[57] Iatrou C. P.; Ketzel L.; Graube M.; et.al. Design classification of aggregating systems in

intelligent information system architectures. 2020 25th IEEE Int. Conf. on Emerging

Technologies and Factory Automation (ETFA), Vienna, Austria, 2020, pp. 745-752.

[58] Redmon J.; Divvala S.; Girshick R.; Farhadi A. You Only Look Once: Unified, Real-Time

Object Detection. 2016 IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), Las Vegas, NV, 2016, pp. 779-788.

[59] Available online: https://raw.githubusercontent.com/eProsima/Fast-

DDS/master/fastrtps.repos.

[60] Rodríguez-Molina, J.; Bilbao, S.; Martínez, B.; Frasheri, M.; Cürüklü, B. An Optimized,

Data Distribution Service-Based Solution for Reliable Data Exchange Among

Autonomous Underwater Vehicles. Sensors 2017, 17, 1802.

[61] Kumar, M.; Singh, A.K. FDDS: An Integrated Conceptual FDDS Framework for DDS

Based Middleware. In Proceedings of the 2019 Int. Conference on Communication and

Electronics Systems (ICCES), Coimbatore, India, 17–19 July 2019; pp. 1952–1956.

[62] Barciś, M.; Barciś, A.; Hellwagner, H. Information Distribution in Multi-Robot Systems:

Utility-Based Evaluation Model. Sen-sors 2020, 20, 710.

[63] Thulasiraman, P.; Chen, Z.; Allen, B.; Bingham, B. Evaluation of the Robot Operating

System 2 in Lossy Unmanned Net-works. In Proceedings of the 2020 IEEE International

Systems Conference (SysCon), Online, 24–27 August 2020; pp. 1–8.

[64] Fernandez, J.; Allen, B.; Thulasiraman, P.; Bingham, B. Performance Study of the Robot

Operating System 2 with QoS and Cyber Security Settings. In Proceedings of the 2020

IEEE International Systems Conference (SysCon), Online, 24–27 August 2020; pp. 1–6.

[65] Coronado, E.; Venture, G. Towards IoT-Aided Human–Robot Interaction Using NEP and

ROS: A Platform-Independent, Accessible and Distributed Approach. Sensors 2020.

[66] Morita, R.; Matsubara, K. Dynamic Binding a Proper DDS Implementation for Optimizing

Inter-Node Communication in ROS2. In Proceedings of the 2018 IEEE 24th International

Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA),

Hakodate, Japan, 28–31 August 2018; pp. 246–247.

[67] Profanter, S.; Tekat, A.; Dorofeev, K.; Rickert, M.; Knoll, A. OPC UA versus ROS, DDS,

and MQTT: Performance Evaluation of Industry 4.0 Protocols. In Proceedings of the 2019

https://raw.githubusercontent.com/eProsima/Fast-DDS/master/fastrtps.repos
https://raw.githubusercontent.com/eProsima/Fast-DDS/master/fastrtps.repos

191

IEEE International Conference on Industrial Technology (ICIT), Mel-bourne, VIC,

Australia, 13–15 February 2019, pp. 955–962.

[68] Sim, W.; Song, B.; Shin, J.; Kim, T. Data Distribution Service Converter Based on the

Open Platform Communications Unified Architecture Publish–Subscribe Protocol.

Electronics 2021, 10, 2524, https://doi.org/10.3390/electronics10202524.

[69] Sung K.; Lee, J.; Shin, J. Study of CAN-to-3GPP LTE gateway architecture for automotive

safety in V21 environment. 2015 IEEE International Conference on Advanced

Communications Technology.

[70] H. Li, L. Chen, W. Chang, J. Tang and K. S. Li. Design and development of an extensible

multi-protocol automotive gateway. 2016 IEEE Int. Conf. on Consumer Electronics-

Taiwan (ICCE-TW), Nantou, 2016, pp. 1-2, doi: 10.1109/ICCE-TW.2016.7521011.

[71] Inkoom, S.; Sobanjo, J.; Chicken, E. Competing Risks Models for the Assessment of

Intelligent Transportation Systems Devices: A Case Study for Connected and

Autonomous Vehicle Applications. Infrastructures 2020, 5, 30.

[72] Chen, J.; Xue, Z.; Fan, D. Deep Reinforcement Learning Based Left-Turn Connected and

Automated Vehicle Control at Signalized Intersection in Vehicle-to-Infrastructure

Environment. Information 2020, 11, 77.

[73] Swamy N., “Evaluation of OPC-UA Technology in a Car-2x Communication towards an

Industry 4.0 Driven Automotive Domain”, Master Thesis, Dept. of Computer Science,

Technische Universitat Chemnitz, 2017

[74] R. Cupek, A. Ziebinski and M. Drewniak. An OPC UA server as a gateway that shares

CAN network data and engineering knowledge. 2017 IEEE International Conference on

Industrial Technology (ICIT), Toronto, ON, 2017, pp. 1424-1429, doi:

10.1109/ICIT.2017.7915574.

[75] Neumann A., Mytych M.J., Wesemann D., Wisniewski L., Jasperneite J. Approaches for

In-vehicle Communication – An Analysis and Outlook. Communications in Computer and

Information Science, vol 718. Springer, 2017

[76] S. Shreejith et al. VEGa: A High Performance Vehicular Ethernet Gateway on Hybrid

FPGA. IEEE Transactions on Computers, vol. 66, no. 10, pp. 1790-1803, 1 Oct. 2017,

doi: 10.1109/TC.2017.2700277.

[77] L. L. Bello, R. Mariani, S. Mubeen and S. Saponara. Recent Advances and Trends in On-

Board Embedded and Networked Automotive Systems. IEEE Transactions on Industrial

Informatics, vol. 15, no. 2, pp. 1038-1051, Feb. 2019, doi: 10.1109/TII.2018.2879544.

[78] M. Iorio, M. Reineri, et.al., "Securing SOME/IP for In-Vehicle Service Protection," IEEE

T. on Vehicular Tech., 69/11, pp. 13450-13466, 2020.

[79] Ma, B.; Yang, S.; Zuo, Z.; Zou, B.; Cao, Y.; Yan, X.; Zhou, S.; Li, J. An Authentication

and Secure Communication Scheme for In-Vehicle Networks Based on SOME/IP. Sensors

2022, 22, 647.

[80] D. -S. Cho, S. Yun, et.al., "Autonomous Driving System Verification Framework with FMI

Co-Simulation based on OMG DDS," 2020 IEEE Int. C. on Consumer Electronics (ICCE),

2020, pp. 1-6

[81] T. Bijlsma et al., "A Distributed Safety Mechanism using Middleware and Hypervisors for

Autonomous Vehicles," Design, Automation & Test in Europe Conference & Exhibition

(DATE), 2020, pp. 1175-1180

[82] H. Zhu, W. Zhou, Z. Li, L. Li, and T. Huang, "Requirements-Driven Automotive

Electrical/Electronic Architecture: A Survey and Prospective Trends”, IEEE Access, vol.

9, pp. 100096–100112, 2021, doi: 10.1109/ACCESS.2021.3093077.

https://doi.org/10.3390/electronics10202524

192

[83] Z. Liu, W. Zhang, and F. Zhao, "Impact, Challenges and Prospect of Software-Defined

Vehicles”, Automot. Innov., vol. 5, no. 2, pp. 180–194, Apr. 2022, doi: 10.1007/s42154-

022-00179-z.

[84] "Zone Control Units”, Continental Automotive. Accessed on: 26.03.2025. [Online].

Available at: https://www.continental-automotive.com/en/solutions/server-zone-

architecture/zone-control-units.html

[85] "Zonal Architecture vs. Domain Architecture", Molex. Accessed on: 26.03.2025.

[Online]. Available at: https://www.molex.com/en-us/blog/zonal-architecture-vs-

domain-architecture-modular-automotive-infrastructure-face-off .

[86] R. Mader, G. Winkler, T. Reindl and N. Pandya, ”The Car’s Electronic Architecture in

Motion: The Coming Transformation”, Vitesco Technologies, 2021. Accessed on:

26.03.2025 [Online]. Available at: https://www.vitesco-

technologies.com/getmedia/4226dcd2-8753-48218c7a-

7644ba070b82/WMS2021_Mader_The-Cars-Electronic-Architecture-in-Motion.pdf

[87] R. S. Rathore, C. Hewage, O. Kaiwartya, and J. Lloret, "In-Vehicle Communication Cyber

Security: Challenges and Solutions”, Sensors, vol. 22, no. 17, p. 6679, Sep. 2022, doi:

10.3390/s22176679.

[88] K. A. Khaliq, O. Chughtai, A. Shahwani, A. Qayyum, and J. Pannek, "Road Accidents

Detection, Data Collection and Data Analysis Using V2X Communication and Edge/Cloud

Computing”, Electronics, vol. 8, no. 8, p. 896, Aug. 2019, doi:

10.3390/electronics8080896.

[89] "Zenoh", Eclipse Foundation, 2022. [Online]. Available at: https://zenoh.io/

[90] M. Barón, L. Diez, M. Zverev, J. R. Juárez, and R. Agüero, "On the performance of Zenoh

in Industrial IoT Scenarios”, Ad Hoc Networks, vol. 170, p. 103784, Apr. 2025, doi:

10.1016/j.adhoc.2025.103784.

[91] A. Saleh, S. Tarkoma, S. Pirttikangas, and L. Lovén, "Publish/Subscribe for Edge

Intelligence: Systematic Review and Future Prospects”, 2024. doi:

10.2139/ssrn.4872730.

[92] L. Lusvarghi, B. Coll-Perales, J. Gozalvez, K. Aghababaiyan, M. Almela, and M. Sepulcre,

"Characterization of In-Vehicle Network Sensor Data Traffic in Autonomous Vehicles”, in

2024 IEEE Vehicular Networking Conference (VNC), May 2024, pp. 211–214. doi:

10.1109/VNC61989.2024.10575960.

[93] M. Kreutzer, M. Seidler, K. Dudzik, V. P. Betancourt, and J. Becker, "Migration of Isolated

Application Across Heterogeneous Edge Systems”, in 2024 IEEE 8th International

Conference on Fog and Edge Computing (ICFEC), May 2024, pp. 64–70. doi:

10.1109/ICFEC61590.2024.00014.

[94] F. Giarre, L. Cominardi, and P. Casari, "Realizing Flat Multi-Zone Multi-Controller

Software-Defined Networks using Zenoh”, in 2022 IEEE Conference on Network Function

Virtualization and Software Defined Networks (NFV-SDN), Nov. 2022, pp. 45–51. doi:

10.1109/NFV-SDN56302.2022.9974876.

[95] G. Baldoni, J. Loudet, L. Cominardi, A. Corsaro, and Y. He, "Zenoh-based Dataflow

Framework for Autonomous Vehicles”, in 2021 IEEE 21st International Conference on

Software Quality, Reliability and Security Companion (QRS-C), Dec. 2021, pp. 555–560.

doi: 10.1109/QRS-C55045.2021.00085.

[96] L. Khorkheli, D. Bourne, G. B. Satrya, S. Elnaffar, and S. E. Choutri, "Zenoh-powered

post-quantum security: protecting IoT-based smart surveillance systems”, IET Conf.

Proc., vol. 2023, no. 39, pp. 168–172, Jan. 2024, doi: 10.1049/icp.2024.0481.

https://zenoh.io/

193

[97] A. Corsaro and colab., "Zenoh: Unifying Communication, Storage and Computation from

the Cloud to the Microcontroller”, in 2023 26th Euromicro Conference on Digital System

Design (DSD), Sep. 2023, pp. 422–428. doi: 10.1109/DSD60849.2023.00065.

[98] J. Zhang, X. Yu, S. Ha, J. Peña Queralta, and T. Westerlund, "Comparison of Middlewares

in Edge-to-Edge and Edge-to-Cloud Communication for Distributed ROS 2 Systems”, J

Intell Robot Syst, v. 110, no. 4, p. 162, Nov. 2024, doi: 10.1007/s10846-024-02187-z.

[99] W.-Y. Liang, Y. Yuan, and H.-J. Lin, "A Performance Study on the Throughput and

Latency of Zenoh, MQTT, Kafka, and DDS," Zenoh Taiwan Team, Zettascale Technology

and National Taiwan University, Mar. 2023. [Online]. Available at:

https://arxiv.org/pdf/2303.09419.pdf .

[100] K. Peeroo, P. Popov, and V. Stankovic, “A Survey on Experimental Performance

Evaluation of Data Distribution Service (DDS) Implementations,” Oct. 2023. Accessed

on: 01.04.2025 [Online]. Available at: https://arxiv.org/pdf/2310.16630 .

[101] Eclipse Foundation, “zenoh-c,” GitHub Repository, [Online]. Available at:

https://github.com/eclipse-zenoh/zenoh-c .

[102] Eclipse Foundation, “zenoh-c Documentation,” [Online]. Available at: https://zenoh-

c.readthedocs.io/en/stable/examples.html

[103] Goh, K. H.; See, K. F. Twenty years of water utility benchmarking: A bibliometric

analysis of emerging interest in water research and collaboration. Journal of Cleaner

Production. 2021, 284, 124711.

[104] Kesari, K. K.; Soni, R.; Jamal, Q. M. S.; Tripathi, P.; Lal, J. A.; Jha, N. K.; Siddiqui, M.

H.; Kumar, P.; Tripathi, V.; Ruoko-lainen, J. Wastewater Treatment and Reuse: a Review

of its Applications and Health Implications. Water, Air, & Soil Pol-lution. 2021, 232, 208.

[105] SC5-11-2018 Horizon 2020 CE – “Digital solutions for water: linking the physical and

digital world for water solutions”.

[106] DS-3-2015: Horizon 2020 CE – ”The role of ICT in Critical Infrastructure Protection”

[107] Mazur, D.C.; Entzminger, R.A.; Kay, J.A. Enhancing Traditional Process SCADA and

Historians for Industrial and Commercial Power Systems with Energy (Via IEC 61850).

IEEE Trans. Ind. Appl. 2016, 52, 76–82.

[108] Gray, A.D.L.; Pisica, I.; Taylor, G. A.; Whitehurst, L. A Standardised Modular Approach

for Site SCADA, Applications Within a Water Utility. IEEE Access 2017, Volume 5, pp.

17177-17187.

[109] Wang, D. Building Value in a World of Technological Change: Data Analytics and

Industry 4.0. IEEE Eng. Manag. Rev. 2018, 46, 32–33.

[110] Savastano, M.; Amendola, C.; Bellini, F.; D’Ascenzo, F. Contextual Impacts on

Industrial Processes Brought by the Digital Transformation of Manufacturing: A

Systematic Review. Sustainability 2019, 11, 891.

[111] Maskuriy, R.; Selamat, A.; Ali, K.N.; Maresova, P.; Krejcar, O. Industry 4.0 for the

Construction Industry—How Ready Is the Industry? Appl. Sci. 2019, 9, 2819.

[112] Johansson, N.; Roth, E.; Reim, W. Smart and Sustainable eMaintenance: Capabilities

for Digitalization of Maintenance. Sustainability 2019, 11, 3553.

[113] Bezerra, A.; Silva, I.; Guedes, L.A.; Silva, D.; Leitão, G.; Saito, K. Extracting Value

from Industrial Alarms and Events: A Data-Driven Approach Based on Exploratory Data

Analysis. Sensors 2019, 19, 2772.

[114] Zyrianoff, I.; Heideker, A.; Silva, D.; Kamienski, C. Scalability of an Internet of Things

Platform for Smart Water Management for Agriculture. In Proceedings of the 23rd

Conference of Open Innovations Association (FRUCT), Bologna, Italy, 13–16 Nov. 2018.

[115] Ma, K.; Bagula, A.; Nyirenda, C.; Ajayi, O. An IoT-Based Fog Computing Model.

Sensors 2019, 19, 2783.

https://zenoh-c.readthedocs.io/en/stable/examples.html
https://zenoh-c.readthedocs.io/en/stable/examples.html

194

[116] Chekired, D.A.; Khoukhi, L.; Mouftah, H.T. Industrial IoT Data Scheduling Based on

Hierarchical Fog Computing: A Key for Enabling Smart Factory. IEEE Trans. Ind. Inform.

2018, 14, 4590–4602.

[117] Dhiman, H.; Deb, D. Studies in Systems, Decision and Control. In Decision and Control

in Hybrid Wind Farms; Springer Nature: 2020; ISBN 978-981-15-0274-3.

[118] Lee, H. Effective Dynamic Control Strategy of a Key Supplier with Multiple Downstream

Manufacturers Using Industrial Internet of Things and Cloud System. Processes 2019,

7, 172.

[119] Mohammed, H.; Longva, A.; Seidu, R. Impact of Climate Forecasts on the Microbial

Quality of a Drinking Water Source in Norway Using Hydrodynamic Modeling. Water J.

2019, 11, 527.

[120] Patel, R.; Gojiya, A.; Deb, D. Failure Reconfiguration of Pumps in Two Reservoirs

Connected to Overhead Tank. In Innovations in Infrastructure. Advances in Intelligent

Systems and Computing; Deb, D., Balas, V., Dey, R., Eds.; Springer: Singapore, 2019;

Vol. 757.

[121] Fischer, J.; Freudenthaler, P.J.; Lang, R.W.; Buchberger, W.; Mantell, S.C. Chlorinated

Water Induced Aging of Pipe Grade Polypropylene Random Copolymers. Polymers 2019,

11, 996

[122] Pérez, F.J.; Otín, M.R.; Mouhaffel, A.G.; Martín, R.D.; Chinarro, D. Energy and Water

Consumption and Carbon Footprint in Tourist Pools Supplied by Desalination Plants: Case

Study, the Canary Islands. IEEE Access 2018, 6, 11727–11737.

[123] Babunski, D.; Zaev, E.; Tuneski, A.; Bozovic, D. Optimization methods for water supply

SCADA system. In Proceedings of the 7th Mediterranean Conference on Embedded

Computing, Budva, Montenegro, 10–14 June 2018.

[124] Huang, Q.; Du, Z.; Lu, N.; Yu, X. Application of non-linear optimization model of

groundwater in well irrigation district of northern China. In Proceedings of the Int. Symp.

on Water Resource and Environmental Protection, Xi’an, China, 20–22 May 2011.

[125] Bartkiewicz, E.; Zimoch, I. Impact of Water Demand Pattern on Calibration Process.

Proceedings 2018, 2, 191.

[126] Ali, E.N.; Muyibi, S.A.; Alam, M.Z.; Salleh, H.M. Optimization of water treatment

parameters using processed Moringa oleifera as a natural coagulant for low turbidity

water. In Proceedings of the Int. Conference on Statistics in Science, Business and

Engineering, Langkawi, Malaysia, 10–12 September 2012.

[127] Whitfield, P. Monitoring water quality through data collection and analysis. In

Proceedings of the GEOSS Workshop XLI, Vancouver, BC, Canada, 24 July 2011.

[128] Stang, S.; Wang, H.Y.; et.al. Influences of water quality and climate on the water-

energy nexus: A spatial comparison of two water systems. J. of Environ. Manag. 2018,

vol. 218, pp. 613-621.

[129] Rosinska, A.; Dabrowska, L. Selection of Coagulants for the Removal of Chosen PAH

from Drinking Water. WATER Journal 2018, Volume 10, Issue 7.

[130] Tsagarakis, K.P. Operating Cost Coverage vs. Water Utility Complaints. WATER Journal

2018, 10/1.

[131] Wu, W.; et.al. Incorporation of variable-speed pumping in multiobjective genetic

algorithm optimization of the design of water transmission systems. J. Water Resour.

Plan. Manag. ASCE 2012.

[132] Mala-Jetmarova, H.; Sultanova, N.; Savic, D. Lost in Optimisation of Water Distribution

Systems? A Literature Review of System Design. WATER Journal 2018, 10/3.

195

[133] Ciolofan, S.; Militaru, G.; Draghia, A.; Drobot, R.; Dragoicea, M. Optimization of Water

Reservoir Operation to Minimize the Economic Losses Caused by Pollution. IEEE Access

2018, Volume 6.

[134] Diaz-Perez, F.J.; Pino-Otin, M; et.al; Energy and Water Consumption and Carbon

Footprint in Tourist Pools Supplied by Desalination Plants: Case Study, the Canary

Islands. IEEE Access 2018, vol. 6.

[135] Wang, D.S. Raw water quality assessment for the treatment of drinking water.

Environmental Earth Sciences 2016, 75/19.

[136] Chowdhury, S. Water quality degradation in the sources of drinking water: an

assessment based on 18 years of data from 441 water supply systems. Environmental

Monitoring and Assessment 2018, 190/7.

[137] Delpla, I.; Florea, M.; Rodriguez, M.J. Drinking Water Source Monitoring Using Early

Warning Systems Based on Data Mining Techniques. Water Resources Management

2019, 33/1, pp. 129-140.

[138] Huang, P.; Zhu, N.;et.al. Real-Time Burst Detection in District Metering Areas in Water

Distribution System Based on Patterns of Water Demand with Supervised Learning.

Water Journal 2018, vol. 10.

[139] Cheng, W.; Fang, H.; Xu, G.; Chen, M. Using SCADA to Detect and Locate Bursts in a

Long-Distance Water Pipeline. Water Journal 2018, vol. 10.

[140] Osman, M.; Ab-Mahfouz, A.; Page P. A Survey on Data Imputation Techniques: Water

Distribution System as a Use Case. IEEE Access 2018, Volume 6.

[141] Kuriqi, A., Assessment and quantification of meteorological data for implementation of

weather radar in mountainous regions. MAUSAM 2016, Volume 67, pp. 789-802.

[142] Sandu, M.; Bode, F.; Danca, P.; Voicu, I. Water flow structure optimization between

the screenings and grit removals in a wastewater plant. In Proceedings of the Int. Conf.

on Energy and Environment (CIEM), Bucharest, Romania, 19–20 October 2017.

[143] Black, K.; Mazier, S. Optimisation of stability and efficiency of wastewater treatment.

In Proceedings of the IET Water Event 2013: Process Control and Automation,

Nottingham, UK, 21–22 May 2013.

[144] J. Song, Y.C. Lee, J. Lee, Deep generative model with time series-image encoding for

manufacturing fault detection in die casting process. J Intel. Manuf 34, 3001–3014

(2023).

[145] J. Villena Toro, A. Wiberg and M. Tarkian, Application of optimized convolutional neural

network to fixture layout in automotive parts. Int J Adv Manuf Tech. 126, 339–353

(2023).

[146] S. Latif, M. Driss, et.al., Deep Learning for the Industrial Internet of Things (IIoT): A

Comprehensive Survey of Techniques, Implementation Frameworks, Potential

Applications, and Future Directions. Sensors 2021, 21, 7518.

https://doi.org/10.3390/s21227518.

[147] N.H. Yu, S. Baek, Fault Detection in Automatic Manufacturing Processes via 2D Image

Analysis Using a Combined CNN–LSTM Model. IFIP Adv. in Inf. and Comm. Tech., vol

663. Springer.

[148] W. Qian, Y. Guo, et.al, Digital twin driven production progress prediction for discrete

manufacturing workshop, Robotics and Comp.-Integrated Manuf., 80, 2023, 102456.

[149] I. Sideris, F. Crivelli, et.al., GPyro: uncertainty-aware temperature predictions for

additive manufacturing. J Inte Manuf 34, 243–259 (2023)

[150] Y. Han, N. Ding, et.al., An optimized long short-term memory network based fault

diagnosis model for chemical processes, J. of Proc Control, vol. 92, 2020, pp. 161-168.

https://doi.org/10.3390/s21227518

196

[151] M. Zhang, J. Li, et. al., Deep Learning for Short-Term Voltage Stability Assessment of

Power Systems, IEEE Access, vol. 9, 2021, pp. 29711-29718.

[152] Y.L.Tsai, H.C. Chang, et.al, Using Convolutional Neural Networks in the Development

of a Water Pipe Leakage and Location Identification System. Appl. Sci. 2022, 12, 8034.

[153] R. Palmitessa, P.S. Mikkelsen, et.al., Soft sensing of water depth in combined sewers

using LSTM neural networks with missing observations. J. Hydro-Environ. Res. 2021,

38, 106–116.

[154] M. Carratù, S. D. Iacono, et.al., "Smart Water Meter Based on Deep Neural Network

and Undersampling for PWNC Detection," in IEEE Trans. on Instr. and Meas., vol. 72,

pp. 1-11, 2023, Art no. 1002211.

[155] K.T.N. Nguyen, François, B., et al. Prediction of water quality extremes with composite

quantile regression neural network. Environ Monit Assess 195, 284 (2023).

[156] Robles-Velasco, A.; Ramos-Salgado, et.al., Artificial Neural Networks to Forecast

Failures in Water Supply Pipes. Sustain. 2021, 13, 8226.

[157] https://towardsdatascience.com/lstm-for-predictive-maintenance-on-pump-sensor-

data-b43486eb3210, accessed on the 4th of June 2024.

[158] S. Matzka, “Explainable Artificial Intelligence for Predictive Maintenance Applications”,

2020 Third International Conference on Artificial Intelligence for Industries (AI4I), 2020,

pp. 69-74. https://doi.org/10.1109/AI4I49448.2020.00023.

[159] C. Wolf, A. Kirmse, M. Burkhalter, M. Hoffmann and T. Meisen, “Model to assess the

Economic Profitability of Predictive Maintenance Projects”, 2019 International

Conference on High Performance Computing & Simulation (HPCS), 2019, pp. 976-981.

https://doi.org/10.1109/HPCS48598.2019.9188221.

[160] K. S. Kiangala and Z. Wang, “An Effective Predictive Maintenance Framework for

Conveyor Motors Using Dual Time-Series Imaging and Convolutional Neural Network in

an Industry 4.0 Environment”, IEEE Access, 2020, vol. 8, pp. 121033-121049.

https://doi.org/10.1109/ACCESS.2020.3006788.

[161] T. Gómez, G. Gémar, M. Molinos-Senante, R. Sala-Garrido, R. Caballero, “Assessing

the efficiency of wastewater treatment plants: A double-bootstrap approach”, Journal of

Cleaner Production, vol. 164, pp. 315-324, 15 Oct., 2017

[162] H. Han, J. Qiao, “Nonlinear Model-Predictive Control for Industrial Processes: An

Application to Wastewater Treatment Process”, IEEE Trans. Ind. Electr., vol. 61, issue

4, pp. 1970-1982, April, 2014

[163] A. Hauser, F. Roedler, “Interoperability: the key for smart water management”, Water

Science and Technology-Water Supply, vol. 15, no. 1, pp. 207-214, 2015

[164] T. Robles, R. Alcarria, D. Martin, et.al., “An IoT based reference architecture for smart

water management processes”, Journal of Wireless Mobile Networks, Ubiquitous

Computing and Dependable Applications, vol. 6/1, pp. 4-23, 2015

[165] P. Daal, G. Gruber, J. Langeveld, D. Muschalla, F. Clemens, “Performance evaluation

of real time control in urban wastewater systems in practice: Review and perspective”,

Environmental Modelling & Software, vol. 95, pp. 90-101, Sept., 2017

[166] M. Zamora Iribarren, C.L. Garay-Rondero, et.al., “A Review of Industry 4.0

Assessment Instruments for Digital Transformation”. Applied Sciences 2024, 14, 1693.

https://doi.org/10.3390/app14051693

[167] S. Smuts, A. van der Merwe, “Key Industry 4.0 Organisational Capability Prioritisation

towards Organisational Transformation”, Informatics 2024, 11, 16.

https://doi.org/10.3390/informatics11020016

https://doi.org/10.1109/ACCESS.2020.3006788

197

[168] M. Gombár, A. Vagaská, A. Korauš, P. Račková, “Application of Structural Equation

Modelling to Cybersecurity Risk Analysis in the Era of Industry 4.0” Mathematics 2024,

12, 343.

[169] F.J. Folgado, D. Calderón, I. González, A.J. Calderón, Review of Industry 4.0 from the

Perspective of Automation and Supervision Systems: Definitions, Architectures and

Recent Trends. Electronics 2024, 13, 782.

[170] O. Oguntola, et.al., “Towards Leveraging Artificial Intelligence for Sustainable Cement

Manufacturing: A Systematic Review of AI Applications in Electrical Energy Consumption

Optimization”. Sustainability 2024, 16, 4798.

[171] M. Shaloo, et.al., “Flexible automation of quality inspection in parts assembly using

CNN-based machine learning”, Procedia Computer Science, vol. 232, 2024, pp. 2921-

2932, ISSN 1877-0509

[172] European Commission, Industry 5.0 Towards a sustainable, human-centric and

resilient European industry, Jan. 2021.

[173] P. Fraga-Lamas, T. M. Fernández-Caramés, A. M. Rosado da Cruz and S. I. Lopes, "An

Overview of Blockchain for Industry 5.0: Towards Human-Centric, Sustainable and

Resilient Applications," in IEEE Access, vol. 12, pp. 116162-116201, 2024, doi:

10.1109/ACCESS.2024.3435374

[174] X. Wang et al., "A Paradigm Shift for Modeling and Operation of Oil and Gas: From

Industry 4.0 in CPS to Industry 5.0 in CPSS," in IEEE Trans. on Ind. Inf., 20/7, pp. 9186-

9193, 2024, doi: 10.1109/TII.2024.3378848.

[175] F.-Y. Wang, J. Yang, X. Wang, J. Li, and Q.-L. Han, “Chat with ChatGPT on Industry

5.0: Learning and decision-making for intelligent industries,” IEEE/CAA J. Automatica

Sinica, vol. 10, no. 4, pp. 831–834, Apr. 2023.

[176] F. Salcher, S. Finck and M. Hellwig, "A Smart Shop Floor Information System

Architecture Based on the Unified Namespace," 2024 IEEE Int. C. on Eng., Tech., and

Innovation (ICE/ITMC), Portugal, 2024, pp. 1-9.

[177] M. Nast, H. Raddatz, F. Golatowski and C. Haubelt, "A Novel OPC UA PubSub Protocol

Binding Using MQTT for Sensor Networks (MQTT-SN)," 2024 IEEE 29th Int. C. on Emerg.

Tech. and Fact. Autom. (ETFA), Padova, Italy, 2024, pp. 1-4, doi:

10.1109/ETFA61755.2024.10711055.

[178] G. Wang, "A Cost-Effective Long-Distance Industrial IoT System," 2024 33rd Int. Conf.

on Comp. Com. and Networks (ICCCN), Kailua-Kona, HI, USA, 2024, pp. 1-5, doi:

10.1109/ICCCN61486.2024.10637593.

[179] P. Koprov, A. Ramachandran, et.al., “Streaming Machine Generated Data via the MQTT

Sparkplug B Protocol for Smart Factory Operations”, Manufacturing Letters, vol. 33,

Supplement, 2022, pp. 66-73, ISSN 2213-8463,

https://doi.org/10.1016/j.mfglet.2022.07.016.

[180] Tan, C.L., et.al., "Nexus among blockchain visibility, supply chain integration and

supply chain performance in the digital transformation era", Industrial Management &

Data Systems, 123/1, pp. 229-252. 2023

[181] D. Ilieva, V. Gladchenko and D. Kolev, "Engineering Risk Analysis of Potential

Outcomes and Threats of the Integration of ERP Systems," 2023 4th Int. Conf. on Com.,

Inf., Electr. and Energy Sys. (CIEES), Plovdiv, Bulgaria, 2023, pp. 1-6, doi:

10.1109/CIEES58940.2023.10378825.

[182] R. A. Williams, G. M. Duman, et.al., "Organizational Factors Enabling Augmented

Analytic and BI 4.0 Implementation Success," in IEEE Engineering Management Review,

doi: 10.1109/EMR.2024.3506865.

198

[183] J. Mäule, T. Kutzler, et.al, "Unified Namespace and Asset Administration Shell: A

Winning Combination for Digital Production," 2024 IEEE 29th Int. Conf. on Emerg. Tech.

and Fact. Autom. (ETFA), Padova, Italy, 2024, pp. 1-7, doi:

10.1109/ETFA61755.2024.10710821.

[184] R. N. G. Xavier, C. Cuarelli, et.al., "Architecture Proposal for SMT Production Line in

the Context of Industry 4.0," 2023 15th IEEE Int. C. on Ind. App. (INDUSCON), Brazil,

2023, pp. 518-524.

[185] M. Wiboonrat, "Cybersecurity of Industrial Automation and Control System (IACS)

Networks in Biomass Power Plants," 2023 IEEE 32nd International Symposium on

Industrial Electronics (ISIE), Helsinki, Finland, 2023, pp. 1-6, doi:

10.1109/ISIE51358.2023.10228108.

[186] López-Gómez, R.; Panizo, L.; Gallardo, M.-d.-M. Flextory: Flexible Software Factory of

IoT Data Consumers. Sensors 2024, 24, 2550. https://doi.org/10.3390/s24082550

[187] Sufian, A.T.; Abdullah, B.M.; Miller, O.J. Smart Manufacturing Application in Precision

Manufacturing. Appl. Sci. 2025, 15, 915. https://doi.org/10.3390/app15020915

[188] M. Sverko, T. G. Grbac and M. Mikuc, "SCADA Systems With Focus on Continuous

Manufacturing and Steel Industry: A Survey on Architectures, Standards, Challenges

and Industry 5.0," in IEEE Access, vol. 10, pp. 109395-109430, 2022, doi:

10.1109/ACCESS.2022.3211288.

[189] Aameri B, Poveda-Villalón M, Sanfilippo EM, et al. Deriving semantic validation rules

from industrial standards: An OPC UA study. Semantic Web. 2024;15(2):517-554.

doi:10.3233/SW-233342

[190] S. R, G. V S, I. R, D. K, B. N and V. A, "Seamless Integration of Legacy Industrial

Systems with OPC UA for Enhanced Digital Transformation," 2024 International

Conference on Power, Energy, Control and Transmission Systems (ICPECTS), Chennai,

India, 2024, pp. 1-6, doi: 10.1109/ICPECTS62210.2024.10780333.

[191] T. P. Garcia et al., "Connecting 3D Printer to the Industrial Internet of Things (IIoT)

through MQTT Sparkplug B Protocol," 2023 IEEE 15th International Conference on

Humanoid, Nanotechnology, Information Technology, Communication and Control,

Environment, and Management (HNICEM), Coron, Palawan, Philippines, 2023, pp. 1-6,

doi: 10.1109/HNICEM60674.2023.10589143.

[192] Pu, C.; Ding, X.; Wang, P.; Xie, S.; Chen, J. Semantic Interconnection Scheme for

Industrial Wireless Sensor Networks and Industrial Internet with OPC UA Pub/Sub.

Sensors 2022, 22, 7762. https://doi.org/10.3390/s22207762

[193] T. Covrig, L. Miclea and A. Ciobotaru, "Development of a Simulated Industrial Process

and its Control with a PLC," 2024 IEEE International Conference on Automation, Quality

and Testing, Robotics (AQTR), Cluj-Napoca, Romania, 2024, pp. 1-4, doi:

10.1109/AQTR61889.2024.10554171.

[194] J. S, T. M, A. K. A, B. K. D and D. P, "Enhancing Factory Automation Through Facial

Recognition Using Phoenix PLC and Factory I/O," 2024 9th International Conference on

Communication and Electronics Systems (ICCES), Coimbatore, India, 2024, pp. 2013-

2019, doi: 10.1109/ICCES63552.2024.10860204.

[195] He, W.; Baig, M.J.A.; Iqbal, M.T. An Open-Source Supervisory Control and Data

Acquisition Architecture for Photovoltaic System Monitoring Using ESP32, Banana Pi M4,

and Node-RED. Energies 2024, 17, 2295. https://doi.org/10.3390/en17102295

[196] R. Kaundal, S. K. Soni and S. Rajguru, "SCADA-Enhanced Real-Time OEE Visualization

Driving Industry 4.0 Advancements," 2024 International Conference on Smart Systems

for applications in Electrical Sciences (ICSSES), Tumakuru, India, 2024, pp. 1-6, doi:

10.1109/ICSSES62373.2024.10561431.

https://doi.org/10.3390/s24082550
https://doi.org/10.3390/app15020915
https://doi.org/10.3390/s22207762
https://doi.org/10.3390/en17102295

199

[197] J. Barata and I. Kayser, “Industry 5.0– Past, Present, and Near Future,” Procedia

Computer Science, vol. 219, pp. 778–788, Jan. 2023, doi:

10.1016/j.procs.2023.01.351.

[198] Architecting an Industrial Unified Namespace (UNS) From 0 to 1, 1st ed., I-Flow

company https://i-flow.co., 2025, pp. 1-32.

[199] S. Rosenkranz, D. Staegemann, M. Volk and K. Turowski, "Explain ing the Business-

Technological Age of Legacy Information Systems," IEEE Access, vol. 12, pp. 84579-

84611, 2024, doi: 10.1109/AC CESS.2024.3414377.

[200] Y. Cho, N. Sang Do, 2024. "Design and Implementation of Digital Twin Factory

Synchronized in Real-Time Using MQTT" Machines 12, no. 11: 759.

https://doi.org/10.3390/machines12110759

[201] M. A. Bär, A. W. Colombo, J. L. Torres, E. Fernandez, M. Rico and M. L. Caliusco, "An

Industry 4.0-Compliant Digital Product Passport Approach for Realising Dairy Product

Traceability," IECON 2023- 49th Annual Conference of the IEEE Industrial Electronics

Society, Singapore, Singapore, 2023, pp. 1-9, doi:

10.1109/IECON51785.2023.10312481

