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1 An overview of scientific, professional, and academic results 

The current chapter presents briefly the author’s evolution after defending the 

Ph.D. thesis considering scientific and professional perspectives, as well as 

regarding teaching and tutoring within the Automation and Applied 

Informatics department.   

 

1.1 Scientific and Professional Activity. 

After defending the Ph.D. thesis entitled “Contributions to the dependability 

analysis for automatic systems“ in 16.11.2007, the author published a number 

of 57 works ([K-2]-[K-58]), and 1 paper [K-1] being submitted to a journal. 

42 scientific papers are indexed in WoS. 

Before stepping in other direction with the research, works [K-54]-[K-58] we 

more or less related to some parts of the Ph.D. thesis, focusing on availability 

and control of mobile robots.  

Then, the author approached several different domains, being involved in 

interdisciplinary research topics in the following years. These research paths 

assured some scientific outcomes that were published as follows:  

- [K-52]-[K-53], representing research that involved fuzzy models in the 

financial domain. The works were focusing on predicting bankruptcy 

based on current financial indicators. Currently both journals are WoS 

indexed Q3 journals with IF: 1.   

- [K-45]-[K-51], approaching the biomedical engineering domain, 

particularly modeling components of the nervous control system 

regarding the cardiovascular system on short term. The modelling was 

focused on the vestibular nucleus and on vestibular receptors involved 

in scenarios as orthostatic stress, but also in the cardiovascular system 

elastance function and valve dynamics. Two of the 7 publications were 

WoS indexed proceedings.  

- [K-44], representing an interdisciplinary research involving Markov 

models based predictions in the social work domain, regarding social 

marginalization of the elderly. The paper was indexed in WoS. 

- [K-41]-[K-43] are researches referring automation in the photovoltaics 

domain. The works focused on modeling a PV panel using interpolation, 

followed by approaches assuring to reach the maximum power point in 

photovoltaic systems. One of the 3 works was published in a WoS 

indexed proceedings. 
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Paper [K-40], indexed in WoS, was conceived after several years of working 

with the industry, mainly as consultant in automation and SCADA. After year 

2014, the author channeled all research focus on IIoT/IoT, Industry 4.0/5.0, 

Industrial automation and SCADA domains. Work [K-26] published in a Q1 

WoS indexed journal presented an overview over the Industry 4.0 and IIoT 

development directions. 

Other several works that were not included in the thesis, however within or 

related to the main domains are briefly enumerated in the followings:      

- Some aspects referring digital transformation were published in two 

recent conference proceedings papers. One [K-6] is starting from the 

OT level to the cloud data transmission using MQTT and JSON, and one 

[K-5] approached the digital transformation in the context of legacy 

asset management system.   

- The research approached some security considerations on the OT level, 

for automation and Supervisory Control and Data Acquisition (SCADA) 

systems. Legacy protocol level communication security is proposed 

using Trusted Platform Modules (TPM) and Elliptic curve cryptography 

(ECC). The legacy protocols related two papers focused on a Modbus 

TCP case study with MITM attack scenario [K-27], [K-13] were published 

and indexed in Q1 and Q2 WoS journal. ECC for OPC UA study was 

approached [K-11] and published in a WoS indexed proceeding. Also, 

while protocol conversion and data packing are essential for 

interoperability and interoperation, a honeypot for a water pumping 

station inside an OPC UA wrapper [K-29] was published in a WoS 

indexed proceeding.  

- Some studies were somehow independent and were not integrated in a 

generic topic. Work [K-9] published in a Q2 Wos indexed journal is 

approaching image compression techniques. Paper [K-25] published in 

a Q2 WoS indexed journal is focused on enhancing the driver safety by 

protection against sun-glare in the automotive sector, while [K-37] 

published in WoS indexed proceedings is focusing on home-security 

systems in an IoT context.   

Due to the large number of published works since defending the Ph.D., only 

part of them were selected to be presented in the current thesis. These studies 

are grouped into 4 chapters.   

Chapter 2 depicts studies focused on IIoT/Industry 4.0 interoperability and 

relies on 10 published works, all WoS indexed. It presents solutions that are 

conceived for integrating legacy protocols, followed by works focusing OPC UA 
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key enabler of the industrial revolution, new specifications, improvements and 

perspectives for industrial scenarios. Finally, emerging protocol studies, and 

protocol coexistence solutions are depicted for the automotive sector. Works 

[K-30], [K-31], and [K-38] were first important steps in the interoperability 

direction and were published in WoS indexed proceedings. Articles [K-19] and 

[K-21] were published as Q1 WoS indexed journals, while [K-2], [K-8], [K-

15], [K-16], [K-18] papers were indexed in Q2 WoS journals.        

The author’s research was focusing also on new technologies referring to 

SCADA. Besides approaching Ignition software, considered one of the most 

influential and complex SCADA environments, 6 studies presented in chapter 

3 were realized and published referring to IGSS, Android SCADA, and Node-

RED SCADA. IGSS optimal resource allocation concept was published in [K-

39], respectively a web module development in [K-34], both works being in 

WoS indexed proceedings. Mobile Android and OPC UA based SCADA solution 

was conceived and developed, first as a basic diagram and OPC UA client-

server application [K-35] published in WoS indexed proceedings, and then as 

a complex runtime and development system that was published [K-10] in a 

Q2 WoS journal. Node-RED based SCADA was approached and published as a 

generic solution [K-21], and then developed in a complex application that was 

validated in industry [K-8], both works being published in Q2 WoS journals. 

Eleven studies [K-7], [K-12], [K-14], [K-17], [K-20], [K-23], [K-24], [K-28], 

[K-32], [K-33], [K-36], oriented on increasing efficiency in an IIoT and 

Industry 4.0 oriented industrial evolution context are grouped in chapter 4. 

The works targeted industrial scenarios mainly in the water sector (9 articles), 

but also in the automotive manufacturing (2 articles). Papers [K-32], [K-33], 

[K-36] and [K-14] were published in conference proceedings, the first 3 being 

WoS indexed. Article [K-23] was published in a Q3 WoS indexed journal. 

Works [K-7], [K-12], [K-17], [K-24], [K-28] were published in Q2 WoS 

indexed journals, while [K-20] is Q1 WoS indexed. 

Three very recent studies [K-1], [K-3], [K-4] are constituting chapter 5, and 

are focused on structured and contextualized data propagation in an Industry 

5.0 and digital transformation context. Works [K-3] and [K-4] were published 

in the summer of 2025 in conference proceedings, while [K-1] is being 

submitted to journal.   

Since defending the Ph.D. thesis, the author was the director of the following 

research and development projects:  

1. Efficiency increase in water domain systems functioning through 

proactive supervision (EFICIENT)/: 77PTE/2022, 27/06/2022-

27/12/2023 – Director at partner.  
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Works [K-7], [K-10], [K-11], [K-12], [K-13] were between the outcomes 

of project 1. 

2. Centralizing and optimizing SCADA in the water sector / Bridge Grant 

cod PN-III-P2-2.1-BG-2016-0208, 2016-2018 - Grant director. 

Works [K-31], [K-32], [K-33], [K-34], [K-35], [K-36], [K-38], [K-39], were 

among the outcomes of project 2.  

3. Project with Continental Automotive entitled:  Artificial Intelligence 

Based Prediction in the Electronic Manufacturing, 01.04.2022-

31.01.2023 – Project director 

Work [K-14] was among the outcomes of project 3. 

4. Project with Continental Automotive entitled: Industry 4.0 Node-RED 

Integration solutions for Building Management System Components, 

01.02.2023-01.06.2023 – Project director 

5. Project with Continental Automotive entitled: Industry 4.0 Node-RED 

Integration Solutions for Building Management System Components – 

Extended Research, 01.06.2023-01.10.2023 – Project director 

6. Grant Continental Automotive entitled:  Researching Facility 

Management Industry 4.0/IIoT Solutions Regarding 

Integrability/Interoperability and Supervision, 01.10.2021-31.03.2022 

– Grant director. 

7. Project with Continental Automotive entitled:  Soluție software în Node-

RED de interfațare, integrare, monitorizare, stocare date de proces, 

01.04.2020-01.06.2020 – Project director 

8. Project with Continental Automotive entitled:   Researching and 

Developing Node-RED Integration Solutions for Building Management 

System Entities, 01.05.2022-01.07.2022 – Project director 

Work [K-8] was among the outcomes of projects 4-8. 

9. Project with Hella entitled: Image processing solutions for equipment 

testing in the automotive industry, 2017 – Project director.  

10.Project with Hella entitled: Prototype research and development for 

image processing solution for ECU testing in automotive manufacturing, 

2018-2019 – Project director 

Work [K-20] was among the outcomes of project 9-10. 

The Hirsch index of the author is 12 in WoS, 14 in Scopus, and 17 in Google 

Scholar. 

The author was invited to review for various journals, such as: 

- IEEE Transactions on Industrial Informatics; 
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- IEEE IoT Journal; 

- IEEE Access Journal; 

- Journal of Manufacturing Systems; 

- Sensors; 

- IEEE Open Journal of the Industrial Electronics Society; 

- Applied Sciences; 

- International Journal of Critical Infrastructure Protection; 

- Sustainability; 

- Journal of Photovoltaics; 

- Journal of Process Control; 

- Energy Sources, T&F; 

etc. 

The professional experience of the author consisted also in a significant 

consulting and development activities in the automation/SCADA domain for 

companies as Louis Berger, Eddacon, CCAT, Tadeco, etc., in various locations 

(e.g. Timis, Constanta, Bihor, Ilfov, Satu-Mare, etc.). The activities provided 

access to latest industrial technologies regarding equipment and solutions.    

Also, the author was external evaluation expert in the European Commission’s 

Horizon programme. This activity provided access to state-of-the-art research 

directions. 

 

1.2 Didactic Activity 

The activity within the Department of Automation and Applied Informatics 

took place in the following periods of time: 2003 – 2008; 2009 – present, as 

Ph.D. student, Assistant Professor, Lecturer, Associate Professor.  

The teaching activity consisted of the followings: 

- Undergraduate studies: 

 Industrial SCADA solutions, 

 Industrial Internet of Things. 

 Industrial IoT and Microcontroller Systems Project. 

 Automation Elements, 

 Linear Systems Theory, 

 Nonlinear Systems Theory,  

 Systems Theory and Automation, 

 Computer Programming, 

 Object Oriented Programming, 

 Mechatronic Project, 

- Graduate studies (Master Programs): 



9 
 

 Automation in Photovoltaic Systems (Renewable energy, solar energy), 

 Complements of Systems Theory (Automatic Systems Engineering) 

 Quality Engineering (Automatic Systems Engineering) 

Among the listed subjects, the author introduced the following courses within 

the Department of Automation and Applied Informatics, and contributed 

significantly for providing the students possibilities to acquire practical skills 

along with theoretical concepts, in the context of the current industrial world:  

 Industrial SCADA solutions – 4th year Systems Engineering – Course and 

Applications, 

 Industrial Internet of Things – 4th year Systems Engineering – Course 

and Applications, 

 Industrial IoT and Microcontroller Systems Project – 2nd year Informatics 

- Project. 

Regarding undergraduate and graduate student coordination after obtaining 

the Ph.D. degree, the didactical activity consisted of the followings: 

· Scientific coordinator of more than 140 diploma and dissertation projects.  

· Close advisor of 6 Ph.D. students, coordinated by Prof. Ioan Silea. 

· Coordinating the research activity of various students within research 

groups and guidance towards scientific publications. 

Between 2008-2009 the author was a Visiting Professor at the University 

Tecnologico de Monterrey, Mexico, where the teaching activity consisted of 

the following courses:  

(Department of Mechatronics) 

 Digital Control,  

 Control Engineering, 

 Microcontrollers, 

 Automatic Control Laboratory, 

 Mechatronic Projects. 

(Department of Computer Science) 

 Intelligent Systems,  

 IT Project Management. 

Following the Ph.D. thesis, two books were published, [K-59] and [K-60]. [K-

60] was published in 2008 and it is a book supporting the teaching activity 

that involves C based programming. [K-59] was published in 2015 and it 

supports SCADA, industrial automation and also IIoT related teaching 

activities being focused on IGSS and Ignition SCADA environments, PLC and 

HMI touch panel programming and OPC interfacing.     
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2 Industrial Interoperability Issues and Solutions in Industry 4.0 

Section 2.1 presents solutions that assure interoperability for legacy systems. 

These legacy systems comprise of various protocols and local technologies 

that represented challenges throughout the years. The target always 

represented interoperability/interoperation and open platform technologies 

that assure a high TRL. The desired output protocol was Open Platform 

Communication Unified Architecture (OPC UA), but there were situations 

where for digital transformation Message Queue Telemetry Transport (MQTT) 

protocol was also envisioned. Information in Section 2.1 is relying on papers 

[K-8], [K-31], [K-38].      

Section 2.2 takes further the research regarding the OPC UA protocol and 

approaches new specifications that rely on publish-subscribe mechanism and 

bring the interfacing closer to real-time. Improvements were approached, 

consisting of synchronization algorithm and multithreading broker over UDP, 

respectively multi-channel communication and image transmission. The 

majority of implemented industrial products based on OPC UA do not include 

the publish-subscribe mechanism. Regarding the fact that the Data 

Distribution Service (DDS) protocol emerged in robotic manipulators, a DDS-

OPC UA protocol coexistence solution in real-time using non-ideal 

infrastructure was conceived. Information from Section 2.2 was published in 

works [K-16], [K-18], [K-19].       

Section 2.3 is focusing on emerging protocols, gateway and protocol 

coexistence solutions in the automotive sector, due to the fact that in-car 

automotive solutions rely on some accepted protocols, different from the 

manufacturing industry. The automotive sector is slowly including Ethernet-

based protocols like DDS, Scalable Service-Oriented Middleware over IP 

(SOME/IP), enhanced Communication Abstraction Layer (eCAL). In the 

context of vehicle to everything (V2X) concept, protocol coexistence solutions 

were approached for automotive in-car protocols, also OPC UA being 

considered. Zenoh emerging protocol is a new candidate for the automotive 

sector, and the current section aims to provide a useful comparison between 

Zenoh and DDS. Information from Section 2.3 was published in works [K-2], 

[K-15], [K-21], [K-30].       

 

2.1 Providing Interoperability for Legacy Systems. 

The Industrial Internet of Things (IIoT) means practically a world of 

interconnected devices. Besides the physical communication support, the 

most important enabler of Industry 4.0 is the interfacing. Protocol related 
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advancements are responsible for eliminating language barriers between 

industrial devices and to create a proper frame for exchanging data. The key 

enabler in the operational technology (OT) level is the OPC UA protocol, 

previously called Object Linking and Embedding for Process Control Unified 

Architecture. 

In industrial environments, automation equipment typically has a long 

operational lifespan, and systems are often designed with proprietary 

protocols, making interoperability a challenging endeavor. Ensuring seamless 

integration within local automation systems can be very complex, and many 

times changes in functional structures must be minimal. Legacy systems refer 

to outdated computing software, hardware, technologies, and protocols that 

are still widely used by many companies and remain essential for daily 

operations. 

Moving basic automation on the OT level towards more complex software 

structures demands interfacing structures and properly trained integrators. 

Field elements are usually integrated and controlled by the first level 

automation structures based on PLCs. First level and further higher-level 

SCADA integration are necessary for the operators. Furthermore, data will 

have to be unified with IT level data coming from other software applications 

(e.g. ERP). IIoT/IoT concepts are relying on universal interfacing and 

communication. The main goal of IIoT/IoT is to obtain communication in a 

proper language among all equipment, even on the same hierarchical level, 

and therefore each device must have the capability to exchange data in a 

universal way.    

The OPC UA interfacing is the key enabler from the integration/interoperability 

point of view. Practical experience in automation/SCADA implementations 

points out that OPC UA is growing exponentially in coverage, but still many 

industries are facing issues in moving forward from legacy protocols. OPC UA 

is viewed differently by the integrators when it refers to local automation 

integration. PLC or field device integration into higher-level structures through 

OPC UA is a target, but many times the protocol is not exposed for 

interoperability. The industry becomes more and more involved towards 

providing products that include OPC UA Client and/or Server for the local level. 

The industry is active in developing embedded OPC UA solutions for PLCs (e.g. 

Beckhoff, Siemens, Schneider), HMI panels (e.g. Siemens, Schneider Electric), 

gateways (e.g. Softing, Matrikon), SCADA (e.g. Inductive Automation, 

Schneider Electric, Siemens). But, still considered in many cases are 

centralizing OPC UA Servers residing on a central processing unit (e.g. OPC 

UA Server from PTC – each specific local protocol with the specific driver 

license, Telecontrol Server Basic – product oriented for Siemens PLCs, etc.). 



12 
 

Technologies evolved at the PLC level and products exist with OPC UA server 

included. Obviously some of them are missing essential specifications (e.g. 

security), and many integrators are not making the interfacing available 

because of incomplete tendering documents.  

Initial important studies referring OPC UA dating around years 2016-2017 

were focused on different aspects related to interoperability/integration. 

Authors in [1] are presenting implementations regarding OPC UA Servers 

applied on PLCs and OPC UA Client development for Onevue. In [2], OPC UA 

is used for the vertical plant integration to provide the process data to all 

higher-level applications. In [3], OPC UA interface is considered in 

characterizing intelligent cyber-physical sensor systems. Other papers like 

[4], [5] are presenting developments focused on integrating OPC UA servers 

for monitoring and controlling production processes, respectively in [6] the 

authors are considering OPC UA to achieve interoperability of micro-grid 

platforms. Using the above-mentioned information, when starting a new 

implementation there are few choices to make the local automation panel 

interoperable through OPC UA. In practice, the chronology of developments 

and the life cycle of the structures are highly reflected in the interfacing and 

interoperability. As noted in [7], manufacturing systems often require local 

processing units to communicate via OPC UA and existing architectures 

present challenges that make OPC UA interfacing difficult to implement. Also, 

papers like [3], [7], [8] were mentioning the need of a middleware structure 

used as wrapper to obtain interoperability.  

In the following years, dating to year 2018, the industry continued to be 

concerned with connecting its physical part with the digital infrastructure, 

respectively to provide interoperability to the entities. Following Industry 4.0 

principles and corresponding studies, the research and industrial community 

continued to ground OPC UA as the key IIoT protocol on the OT level (e.g. 

[9], [10], [11], [12]). The OPC UA continued to function on client-server basis, 

being is platform independent, including security modes and policies, allowing 

easy addressing. It provides an address space on the server side containing 

brows-able nodes, it may include classic OPC features (DA - Data Access, A&E 

- Alarms and Events, HDA - Historical Data Access), etc. Research studies 

related to OPC UA were implementing OPC UA servers and clients associated 

for different hardware-software equipment. The OPC UA sever research and 

development was approached for various process structures (e.g. on the 

sensorial level in [13], [14], various OPC UA server developments for the 

process parts in [15]), and some are considering various issues/applications 

related already functional OPC UA servers (e.g. redundancy in [16], web-

based platform for OPC UA in [17], etc.).   
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Automation equipment typically operates for extended periods, resulting in 

numerous legacy systems where invasive modifications are generally avoided. 

Industry efforts focus on making these systems interoperable and integrating 

them into higher-level supervisory applications. At the same time, horizontal 

communication between entities is sought to enhance flexibility and 

adaptability. To meet these requirements, non-invasive interfacing with local 

automation, protocol conversion for legacy systems, and deployment of local 

OPC UA servers enabling both horizontal and vertical interoperability, a 

middleware solution is essential. 

OPC UA based middleware solutions for the industry were researched in 2016-

2018 (e.g. [18], [19]) to provide interoperability for the local equipment. As 

generally known, serial Modbus was one of the most widespread protocol used 

in the industry. Even now, serial Modbus and Modbus TCP are omnipresent on 

the first level PLC integration (e.g. measuring equipment, frequency 

converters).   

Beyond ensuring interoperability, local control structures often require further 

development or improvement without altering existing PLC software due to 

constraints such as warranty restrictions, limited implementation details, or 

missing development licenses. In such cases, an OPC UA hardware gateway 

that cannot augment the software application proves unsuitable, even when 

the local PLC itself offers compatibility. 

When implementing industrial structures, several key factors are prioritized: 

minimizing development time, reducing process downtime to near zero, 

controlling costs, and ensuring ease of maintenance and future scalability. 

Considering the above-mentioned aspects, section 2.1.1 presents based on 

information from papers [K-38], [K-31] two researched OPC UA wrapping 

structures. The two wrapping structures approach Modbus serial and Modbus 

TCP as basic protocol. Both solutions were applied in the water industry and 

present flexibility to be adapted for other basic legacy protocols. The first one 

is a low-cost middleware OPC UA wrapping structure based on Node-RED and 

Raspberry Pi. The second solution presents a serial Modbus to OPC UA 

wrapping solution with IoT-2040 as hardware and Node-RED as software 

environment. The wrappers provide the possibility to monitor and control the 

local system, to store and query data into/from a local database, to further 

implement control algorithms for existing structures without modifying the 

local software. 

Currently, the integration of networking, interfacing technologies, and smart 

computing in manufacturing continues under the Industry 4.0 paradigm [20]. 

Core IIoT principles like interconnection of devices anytime and anywhere are 
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applied to improve safety, efficiency, and productivity. The rapid evolution and 

widespread adoption of IIoT and Industry 4.0 in recent years have significantly 

impacted multiple domains and reshaped traditional manufacturing 

organizations [21, 23]. The key towards transformation is to assure 

interoperability. This can be solved through integration of IIoT legacy and new 

protocols and technologies [22], but also legacy IoT web-based techniques 

which sometimes represent the only available option. The objective is to 

design systems capable to monitor, collect, exchange, analyze, and deliver 

information, structured as networks of interconnected industrial devices that 

employ communication technologies to achieve interoperability [23]. 

Although legacy technologies are outdated from a modern perspective [24], 

many remain essential for enterprise infrastructure, making replacement 

difficult. Current industry trends highlight the need for evolution and 

expansion of manufacturing and monitoring processes, driving the integration 

of legacy solutions into IIoT networks [23, 25, 26]. When targeting digital 

transformation and the requirement to unify OT-IT levels, a current important 

approach is towards the MQTT protocol, as a broker based solution with fast 

deployment. Therefore, classic OPC UA to MQTT conversion is important for 

OT systems to reach a common ground with the IT and cloud level.  

Section 2.1.2 presents based on paper [K-8] the integration issues and 

solutions in the automotive manufacturing industry, particularly in a Building 

Management System (BMS) facility, where various legacy systems are 

functioning. Also, an OPC UA to MQTT conversion solution in Node-RED is 

provided.  

 

2.1.1 Assuring Interoperability through Modbus to OPC UA conversion 

The section introduces first a cost-effective middleware solutions based on 

OPC UA wrapping structure, aimed at facilitating interoperability within local 

automation networks. The OPC UA wrapper not only enables system 

monitoring and control but also supports the creation of a local data archive 

and the implementation of advanced control algorithms. It also enhances tag 

packaging for structured data integration into SCADA systems without 

requiring changes to the existing local software. The wrapper is conceived to 

be a complete hardware-software solution that complements the local 

automation structure. 

The research considered various hardware and software environments in order 

to choose the most suitable variant for a high TRL, low cost, and minimized 

implementation times and local process downtime until deployment. From the 

hardware point of view several choices were taken into consideration, with 
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selection criteria oriented towards the cost issue, capabilities, industry focus 

(e.g. powering, physical communication support, enclosure and industrial 

deployment possibilities, operating system), and device popularity (e.g. 

higher chance of adoption by integrator, implicit higher reliability).  

From a software perspective, the analysis began with OPC vendors to identify 

environments capable of addressing integration challenges. OPC DA/UA 

wrapper solutions were examined for their role in connecting local SCADA 

servers to higher-level control centers, including products from Unified 

Automation, Matrikon, etc. Although the Windows-oriented DA client was not 

a primary objective, mature wrapping solutions on similar equipment were 

reviewed to assess their evolution. The main focus remained on OPC UA 

servers and clients, implemented either through SDKs or installation-ready 

products, with several key issues considered: platform independence and easy 

deployment on hardware suitable for automation panels, with devices such as 

Raspberry Pi providing sufficient performance; protocol conversion via 

middleware, enabling local protocols to be integrated into OPC UA servers, 

targeting open-source solutions; high technological readiness to ensure rapid 

implementation in real applications; modularity and flexibility to support new 

algorithms and seamless integration with both local and higher-level modules 

(e.g., OPC UA servers); ease of knowledge transfer to automation and SCADA 

integrators; low cost for both usage and development; additional features, 

such as local database support and lightweight SCADA functionalities. 

One environment of an OPC products developing company could not be chosen 

considering the upper mentioned issues. Two java based software 

environments were considered to be the most appropriate for the final 

solution: Ignition and Node-RED. Node-RED was chosen, being a lightweight, 

open-source and free environment that covers all the presented issues. 

Although Ignition was somehow closer to automation/SCADA integrators and 

Node-red was coming at that time from other software levels, the flexibility 

and openness of Node-red, respectively its flow oriented programming style 

would be better exploited and of greater industrial impact for the OPC UA 

wrapper concept. 

The first step in the wrapper development is the interfacing with the local 

structure. The solution was prepared to be tested in real-world applications, 

in a case study for the water industry. Modbus TCP was the local protocol 

implemented at the PLC level. The Modbus TCP client node was foreseen to 

read an array of values from a holding register, starting from an initial 

address, using a poll rate of 15 seconds that was considered sufficient for the 

wastewater pumping stations (WWPS).  
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After reading from the local structure, the next step involves identifying 

individual variables through function blocks and applying bitwise masks. The 

separated tags can then support small-scale monitoring and control via 

dashboard packages or direct web solutions. A key feature of the wrapper is 

its ability to implement supplementary control algorithms without altering the 

existing local configuration, using function blocks and payload transfers. 

Moreover, variable restructuring and grouping through function blocks can 

reduce higher-level SCADA licensing costs (e.g., combining digital alarm and 

state bits into words) and optimize SCADA integration. 

Database connectivity within the middleware wrapper can be achieved using 

packages such as SQLite, MySQL, MSSQL, or PostgreSQL. The wrapper’s 

purpose was to enable a lightweight local database for analysis, leading to the 

selection of SQLite. After creating the database, data will be inserted as 

presented in Fig.  2.1-1. The array obtained from the local PLC is restructured 

to select and group tags into a final array. A timestamp is appended and 

converted into readable data, after which an insert function is generated and 

the payload transmitted to the designated SQLite database. 

 

Fig.  2.1-1 Inserting into the SQLite database  

The final step involved creating the OPC UA server and inserting tag values. 

The server was established using the OPC UA Server Node, with initial folder–

tag structuring required to enable future browsing. OPC UA commands 

(addFolder, addVariable) are transferred successively as payloads to the OPC 

UA Server node. Namespace index (ns) and channel/tag name (s) are 

transferred as topic to the OPC UA Server node. 

Following the creation of the OPC UA server and its folder–variable structure, 

the subsequent step was the continuous insertion of values into the defined 

tags (e.g. see Fig.  2.1-2). Processed values from the local automation are 

transferred as payloads to OPC UA items defined by namespace, tag name, 

and datatype. The OPC UA client then operates the write procedure using the 

specified server endpoint address and the designated action type. 

 

Fig.  2.1-2 Inserting tag values in the OPC UA server 
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After testing the Modbus TCP – OPC UA wrapper solution in the laboratory, 

the following step was represented by a real test scenario in the water sector. 

The WWPS comprised a dual-pump electro‑mechanical system equipped with 

a level transducer, flowmeter, PAC3200 electrical parameter unit, intrusion 

and gas leakage sensors. Control strategies were implemented through an 

S7‑1215 PLC. Additional local equipment included a CSM unmanaged switch 

for network aggregation, a Geneko 3G communication module, and a KTP 600 

HMI. An automation panel of a WWPS is depicted in Fig.  2.1-3. 

 
Fig.  2.1-3 The WWPS automation panel 

Fig.  2.1-4 details a dashboard screenshot from the wrapper application, 

presenting the emptying procedure of the WWPS. Reaching the high-level limit 

and noticing the overcurrent fault at pump 1, the local algorithm starts pump 

2. Fig.  2.1-5 displays the most recently extracted rows from the SQLite 

database corresponding to the exposed status. 

 
Fig.  2.1-4 Node-red dashboard – WWPS emptying 

 
Fig.  2.1-5 Database View 
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The implemented OPC UA server was accessed by a higher level IGSS SCADA 

application using its OPC UA client for testing.  As seen in Fig.  2.1-6 the 

browsing procedure finds the tags within the OPC UA server, and is able to 

see the values of the variables (e.g. 160 for the Level_High_Limit as in Fig.  

2.1-4 and Fig.  2.1-5), respectively to proceed to atom mapping. 

 
Fig.  2.1-6 Browsing the previously defined OPC UA server 

After obtaining the OPC UA based middleware structure applied as a wrapper 

structure for Modbus TCP conversion, the following study presents a serial 

Modbus - OPC UA wrapper solution. The structure was designed for real-world 

application, using IoT‑2040 hardware and Node‑RED as the software 

environment. IoT‑2040 features, 1 GB DDR3 memory, Intel Quark X1020 

processor, microSD storage, dual Ethernet ports, RS‑232/RS‑485 interfaces, 

USB, 24 VDC supply, and industrial enclosure, provide high processing 

capacity, versatile connectivity for local automation, seamless panel 

integration, and industrial-grade reliability. The physical support for distance 

communication will be assured by the RUT240 router.  

From a functional point of view, as shown in Fig.  2.1-7 the serial Modbus 

client transfers data to the filtering module, which analyzes, splits, and maps 

values to local variables. The processing module then manipulates these 

variables, implements diagnostic and protection structures, and extends local 

logic with additional algorithms. The structuring module defines the data 

format for OPC UA representation, while the sampling control module 

schedules tag injection to minimize bandwidth consumption. Finally, the node 

value injection module updates the specified node within the OPC UA server. 

When an external OPC UA client initiates a control action on a process tag, the 

node value change module detects it, while the Modbus structuring module 

maps the information to a corresponding Modbus address. The value injection 

module then transmits data to the Modbus client, which acts on the external 

Modbus slave. Additionally, two monitoring and safety modules were 

implemented for both the OPC UA server and Modbus client, ensuring 

application status tracking and executing critical safety functions such as 

restarting the server, client, or the entire application. 
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Fig.  2.1-7 Functional overview of the serial Modbus – OPC UA wrapper 

The OPC UA server being ready for subscriptions, configured with folder and 

node setup, authentication, security mode and policy, etc., the wrapper 

solution was tested first in laboratory and afterwards on integrating a real 

WWPS. Key factors that may cause communication issues with the OPC UA 

client include certificate generation and exchange, hostname configuration, 

and proper date–time synchronization. 

The laboratory setup was based on an Arduino Uno CPU, implementing a 

simple process with three LEDs controlled by internal variables and functions 

tracking operating hours and start counts. These variables, including LED and 

switch states, were integrated into a local serial Modbus slave structure. The 

Modbus protocol was tested over both RS232 and RS485 physical layers. As 

depicted in Fig.  2.1-8, where Modbus RTU was used, pins 0 and 1 on the 

Arduino board were used for serial wiring. An Ethernet link was established 

between the IoT‑2040 and the RTU‑240 router, which was configured to 

simulate real conditions while supporting both 4G/LTE and WiFi 

communications for testing. 

The Modbus client was developed in Node‑RED, and an OPC UA server was 

defined to host the taken-over Modbus variables. Additional functions were 

tested such as variable population scheduling, automatic redeployment on 

failure, protection structures, communication and server status checks, and 

router access control. For the laboratory setup, the OPC UA client was also 
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implemented in Node‑RED, first deployed on a Windows 10 PC and later on a 

Samsung Android 7 device. 

 
Fig.  2.1-8 Schematic view of the implemented Modbus-OPC UA wrapper for the Arduino laboratory test application 

A simple dashboard GUI was created to command and monitor the three LEDs. 

The status from Fig.  2.1-9 illustrates the OPC UA client GUI, where activating 

the second and third switches triggers LED 2 and LED 3 (the state of the real 

process is visible in Fig.  2.1-8). 

 
Fig.  2.1-9 Node-RED Dashboard in OPC UA Client application for Windows (PC) and Android (Phone) 

The real process consists of a WWPS with four pumps, cascaded with other 

stations to ensure wastewater transport across the local sewage network 

toward the treatment plant. Local automation is minimal, with pump operation 

based on level switch feedback. Each pump provides state and fault signals, 

complemented by a general anti‑burglary signal. Electrical parameters such 

as voltages, currents, power, and total energy, are measured locally. The first 

control level is managed by a Wilo controller, while the station PLC is a Wago 

750‑816. The local automation panel is illustrated in Fig.  2.1-10, and Fig.  
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2.1-11 presents the IoT-2040 together with the Teltonika RUT240 router 

inside the WWPS in connection with the Wago PLC. 

 
Fig.  2.1-10 A view inside the local automation panel 

 
Fig.  2.1-11 The wrapper inside the WWPS 

The architecture of the solution in the real scenario is shown in Fig.  2.1-12. 

The wrapper integrates into the functional system non‑invasively, with the 

IoT‑2040 connected to the Wago PLC via RS‑232 using the Modbus protocol. 

 
Fig.  2.1-12 Schematic view of the implemented Modbus-OPC UA wrapper inside the WWPS automation 

The results obtained with an UA client from Softing company are illustrated in 

Fig.  2.1-13, augmented with English explanations, the primary digital tags 

are browsed within the local OPC UA server address space. 

The Softing OPC UA client offers extensive configuration options (e.g. 

response times, session naming) and greater flexibility in handling 

inconsistencies such as hostname issues, compared to clients with fewer 

settings like IGSS. In IGSS, as in many SCADA systems, certain parameters 

are hardcoded in the interface to enhance usability and robustness. 
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Consequently, IGSS SCADA was employed for testing to validate solution 

efficiency and ensure operator accessibility through synoptic schemes, alarms, 

and graphics. A WWPS synoptic diagram was developed in the SCADA control 

room to display pump states, faults, and numerical data (e.g. operating hours, 

electrical parameters). All tags were tested, including faults integrated into 

the IGSS Alarms and Events module. 

 
Fig.  2.1-13 Softing OPC UA client connected to the wrapper 

Two embedded graphs were placed in the diagram and mapped to digital 

atoms (see Fig.  2.1-14), and one independent Graph object with detailed 

graphical information. As pointed out in the two embedded graphs from Fig.  

2.1-14, pumps 3 and 4 started four times between 9:00-13:00 on the 18th of 

May 2018. The first two pumps did not start in the rotation algorithm due to 

fault states. During testing, burglary and level overflow alarms were triggered 

to assess notification times at fault occurrence and resolution. Internal 

software faults were also induced, with the system responding as expected. 

When the highest‑severity fault was introduced, the application automatically 

reinitialized, and Node‑RED fully recovered the wrapper under five minutes. 

 
Fig.  2.1-14 Augmented screenshot from the IGSS application 
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2.1.2 Targeting Other Legacy Protocols and Solutions for Industry 4.0 Integration in Real 

Industrial Scenarios 

The scenarios from 2.1.1 are covering many use cases. Other real industrial 

scenarios are presenting various situations that require a consistent degree of 

research to overcome certain obstacles, as depicted in [K-8].  

 

2.1.2.1 M-Bus integration scenario 

In the automotive manufacturing industry, the Building Management System 

(BMS) is an example where several approaches were necessary in order to 

provide Industry 4.0 integration capabilities to hardware-software 

solutions/equipment. A first example is referring to gas and water meters that 

are preconfigured with M-Bus interface and functioning in a stand-alone 

manner in the plant facilities. To integrate on a protocol level M-Bus based 

devices, few choices were available and almost all required supplementary 

industrial processing units within automation panels. The research approached 

Node-RED, as the IIoT solution for protocol integration, wrapping and 

conversion. But, in order to cope with the physical communication support 

provided by the devices, a conversion unit was adopted (IZAR Center) that 

was able to physically centralize and provide the M-Bus protocol under 

Ethernet support. Then the integration of the M-Bus data was developed within 

Node-RED, to be available to other levels on various ways, using OPC UA, 

database and visualization tools. The architecture of the solution is depicted 

in Fig.  2.1-15  

 
Fig.  2.1-15 M-Bus integration architecture with Node-RED 
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2.1.2.2 OPC DA integration scenario 

The Modbus or S7 integration generally followed the principles from 2.1.1, but 

situations occurred where legacy supervision was the end-of-line in the 

integration. When it is about PLC integration then legacy SCADA has to be 

approached for further interoperability, but when measuring elements are 

supervised in proprietary environments then the difficulty is further increased. 

As many times legacy SCADA provides at least an OPC DA legacy server, 

proprietary environments are usually closed systems. The case of electrical 

parameters monitoring using PAC devices is a common practice. The PAC 

devices, depending on the version, have a native Modbus protocol 

implemented, either TCP or serial. The issue with the serial Modbus is that no 

multi-master possibility exists. Siemens proposes the Sentron Power Manager 

product for monitoring the electrical parameters that are measured with PAC 

devices. The product evolved initially towards Industry 4.0 openness but then 

they changed their perspective. Therefore, the Power Manager 3.5 could 

activate its own OPC DA server that exposed the parameters within the 

address space, off course being dependent of Windows operating system. But, 

Power Manager 4.2 application encountered in practice could not expose any 

protocol for further integration and the only access to maintain the functioning 

product was a rudimentary SQL database access. 

As shown in Fig.  2.1-16, an OPC DA – UA wrapper was proposed in order to 

elevate the interface for Power Manager 3.5 and to extend the lifetime of the 

purchased and functioning software. The chosen environment was Ignition, 

using its gateway with licensed OPC DA interfacing. The monitoring graphical 

environment from Ignition was used only when implementing the protocol 

conversion and wrapping project that was applied to the functioning gateway. 

This way, a low-cost, high availability, and platform independent wrapper was 

obtained that exposes the data in OPC UA protocol.        

 
Fig.  2.1-16 OPC DA integration using OPC DA-UA wrapper 
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2.1.2.3 HTTP based integration scenario 

Sometimes OT level protocols are not available, but as described in [K-8] web-

based solutions are encountered that host data in isolated software 

environments that are specific to a hardware equipment, based on the HTTP 

protocol. This data acquisition method segregates information rather than 

aligning with IoT‑ready systems. To integrate legacy systems, data availability 

must follow the IoT paradigm through reformulated acquisition, monitoring, 

and control functions. Technically, data exposure to specific software is limited 

to the HTTP protocol, with or without an API. 

For the integration of a legacy application using HTTP protocol, it is mandatory 

to analyze the imposed requirements and limitations of the system. The real 

scenario where an API was available is depicted in Fig.  2.1-17 and the system 

consists of the OZW 775 hardware–software platform, which communicates 

with plant equipment via the KNX protocol, supported by a monitoring tool for 

periodic infrastructure checks. The supervision tool is closed and unsuitable 

for continuous operation. At the lower level, a web server provides an API that 

creates a session at each logon rather than exposing data directly in HTTP 

responses. Data is organized into sensor‑specific data‑points, each containing 

individual characteristics, with API responses delivering essential device 

information. Endpoints handle one data‑point per request, but limitations 

include restricted concurrent requests, insufficient documentation, and 

heterogeneous data requiring extensive formatting. 

 
Fig.  2.1-17 Real scenario for HTTP based integration 

Considering these factors, a dedicated architecture was required to manage 

the high volume of HTTP GET requests imposed by the legacy system. Such 

interoperability gaps present significant challenges for integrating legacy 

infrastructures. The solution was not proposed to be static, but to automate 

the whole callback process for the GET requests and allow seamless data 

processing in an efficient manner (see Fig.  2.1-18), as opposed to creating a 

request individually per each data-point. The dynamic attribution of 

configuration parameters for the HTTP request node proved to be more 
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beneficial overall when compared to a classic approach, due to the high 

volume of repetitive requests.  

 
Fig.  2.1-18 Data manipulation logic 

When HTTP integration is required without an API endpoint, the approach 

becomes rudimentary, demanding deeper investigation into alternative data 

acquisition methods. Tests on an Ingersoll Rand VX web server (lacking 

integrated API support) revealed reliance on outdated acquisition techniques 

that obscure software design and provide little usable information. DevTools 

proved essential by mapping network requests to backend calls. Initial 

attempts to access the server via direct hyperlinks returned HTML responses, 

which were unsuitable for constructing reliable logic or ensuring data quality, 

as their relevance for extraction was limited. Behind the web server, a certain 

request URL was discovered that was able to satisfy the conditions of data 

integrity and quality. Each page call returns in this situation a .XML response. 

This type of response, different from the expected response type, widely-

utilized JSON, was adequate in obtaining the entailed data. The data 

acquisition in the exposed industrial scenario is depicted in Fig.  2.1-19. 

 
Fig.  2.1-19 Data acquisition for the case study presented 

2.1.2.4 Event-based approach for data acquisition without transmission protocol 

There are situations where even on the OT level, solutions are deployed as 

segregated and considered complete. This means that edge devices are taken 
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over into a small proprietary software application on a separate PC that 

assures a rudimentary data monitoring and storage. Between the edge devices 

and the centralizing application it may be an industrial protocol, but over that 

there is no protocol for future integration. In such cases, two options arise: to 

get data directly from the edge devices, or to approach the centralizing 

application. Usually the first option mean to erase completely the centralizing 

application, due to the fact that usually no multi-master protocols are utilized 

in the corresponding communication.  

The current section approaches an industrial BMS scenario where data from 

several temperature and humidity sensors are taken over through Modbus 

ASCII and Modbus RTU, and stored in an outdated manner, in text files with 

the specific .txt extension (see Fig.  2.1-20). This type of data storage has 

certain limitations and disadvantages, such as: linear searching across large 

levels of data due to the lack of indexing, no possible relationship between 

row entries, lack of relationship between file-stored data and dissimilar 

datatypes namely integers, floats and/or booleans. Thus, complete association 

with such outdated legacy mechanism comprises a dynamic approach capable 

of satisfying the needed requirements for data acquisition and formatting. In 

many real scenarios, like in the current one, the second integration option was 

required because the legacy structure could not be altered in any way.  

Given these constraints, the implementation began by identifying a 

methodology to address variable file affixing times. This ruled out the classic 

Node‑RED injection node with fixed intervals, leading instead to folder 

surveillance triggered by file updates, an event‑driven architecture (EDA). EDA 

improves network efficiency by processing only changed data, though most 

legacy systems lack mechanisms for easy adoption. To handle this, a 

context‑aware flow variable was introduced to detect updated files. Legacy 

software added complexity, as extracted data appeared only in buffer or string 

formats, causing datatype inaccuracies. Database insertion was designed 

dynamically, with timestamp formatting included, and optimized through 

batch operations to reduce resource consumption. This approach also enables 

integration of disparate tables and extension to new sensors and actuators.  

 

2.1.2.5 OPC UA to MQTT data conversion module in Node-RED 

The evolution towards Industry 4.0/5.0 determined an architectural 

reconsidering to adopt digital transformation strategies that can bridge the 

gap between the OT and IT layers. Due to the fact that according to current 

protocol capabilities and the general state of the art in interfacing, many 

conceptual approaches are defining broker based solutions to implement 
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publish-subscribe decoupled architectures, MQTT became an important 

transport protocol.  

 
Fig.  2.1-20 Scenario for integration without protocol 

The poll/response approach has disadvantages that inherently make a system 

slower/overwhelmed in the process of retrieving data constantly that in many 

cases has not changed. In digital transformation the current tools and trends 

in manufacturing indicate that data many times decoupled entities represent 

an advantage, and data should be trusted, understood and accessible at all 

levels. The subject will be detailed more in the following chapters, the current 

section presenting a Node-RED solution that allows accessing data from the 

OT level within OPC UA format and exposing it into MQTT topics within a 

broker. Obviously MQTT data has to be packed and structures, solutions will 

be discussed in following chapters. In the current section, as it can be 

observed in fig. Fig.  2.1-21, topics are initiated separately, as simple MQTT 

variables that can be further processed and subscribed. The address space of 

the OPC UA server coming from the OT level is browsed and variables are 

selected and put in a correct format.  

 
Fig.  2.1-21 OPC UA – MQTT data conversion solution 
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2.2 Approaching and Improving OPC UA. 

OPC UA protocol is a major enabling technology and research is continuously 

carried out to extend and to improve its capabilities, to fulfil the growing 

requirements of specific industries and hierarchical levels. Consistent issues 

to be approached are related to the latest specifications and the real-time 

context that could extend the applicability of the protocol and bring significant 

benefits in terms of speed, data volumes, footprint, security. Section 2.2.1 

synthesizes information from [K-19] that approaches first the conceptual 

analysis to improve the OPC UA interfacing using the Publish-Subscribe 

mechanism, focusing on real-time constraints and role distribution between 

entities. The conceptual analysis is materialized into a solution that takes OPC 

UA Publish-Subscribe over User Datagram Protocol (UDP) mechanism to the 

next level by developing a synchronization algorithm and a multithreading 

broker application to obtain real time responsiveness and increased efficiency 

by lowering the publisher and the subscriber footprint and computational 

effort, reducing the difficulty of sending larger volumes of data for various 

subscribers and the charge on the network and services in terms of polling 

and filtering.  

Section 2.2.2 presents research from [K-18], and aims to consider higher 

data-volumes, approaching the multi-channel UDP-based communication, and 

analyzes the robustness of the developed mechanism in the context of long-

term data transmission. The research extends the applicability of the OPC UA 

in the context of image transmission. Although highly needed, the image 

transmission after processing is currently beyond the reach of OPC UA or other 

legacy industrial protocols, being considered as a separate fraction in the 

industrial environment. The concept and developments are applied without 

special hardware constraints considering both the end-of-line industrial 

manufacturing process in the automotive sector and the car-to-infrastructure 

communication.  

OPC UA has to consider the coexistence with other emerging real-time 

oriented protocols in the production lines. The Data Distribution Service (DDS) 

will be present in future architectures in areas as robots, co-bots, and compact 

units. Section 2.2.3, presenting the research from [K-16], proposes a solution 

to evaluate the real-time coexistence of OPC UA and DDS protocols, 

functioning in parallel and in a gateway context. The purpose is to confirm the 

compatibility and feasibility between the two protocols alongside a general 

definition of criteria and expectations from an architectural point of view, 

pointing out advantages and disadvantages in a neutral manner, shaping a 

comprehensive view of the possibilities. The solution is applied using non-ideal 

infrastructures to accelerate the applicability in the production lines. 
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2.2.1 Improving OPC UA Publish-Subscribe Mechanism over UDP with Synchronization 

Algorithm and Multithreading Broker Application 

OPC UA, as an Industry 4.0 enabler, was initially applied at the SCADA level 

through software environments and centralizing servers. Its advantages soon 

extended to other layers, entering the PLC level via the classic client–server 

data acquisition component. Over time, companies demanded broader 

functionality, incorporating additional characteristics and services. Studies 

were conducted to extend application functionality down to the field‑device 

level [27-28], or to approach the cloud integration using OPC UA [29].  

New OPC UA specifications introduced the publish–subscribe mechanism, 

enabling real‑time communication and higher data volumes [30]. Its 

applicability in factory automation has been evaluated [31], while further 

research explored integration [32] using the open62541 SDK [33], a widely 

maintained tool in academic and industrial contexts. Several issues remain 

regarding real‑time performance and architectural applicability, requiring 

detailed analysis. Parallel studies near industrial deployment have shifted 

focus toward lower‑level protocols such as MQTT, in relation to higher‑level 

OPC UA [34] and Sparkplug B [35], though without implementing publish–

subscribe according to the new OPC UA specifications.         

The OPC UA publish–subscribe mechanism is relatively recent compared to 

other communication protocols widely applied in real‑time systems. While 

diverse use cases and implementation strategies exist, its envisioned 

improvements were designed to incorporate established practices from 

industrial protocols already used in real‑time applications. Two protocols that 

were considered in [K-19] as more mature in this direction were Some/IP and 

DDS. In this context, the corresponding mechanisms were studied for 

orienting OPC UA improvements towards previously established common good 

practices.  

As described in [36], SOME/IP notifications inform subscribers of value 

changes or event occurrences, while also allowing them to request updates or 

verify variable status through designated methods. The standard separates 

responsibilities between the SOME/IP instance, which transports changed 

values, and the service discovery component, which manages subscription and 

publishing. Notifications can be cyclic, on‑change, conditional, and messages 

include the serialized payload length, useful for end‑to‑end verification and 

filtering. At protocol level, SOME/IP employs both UDP and TCP to address 

congestion, message loss, bit errors, and other transmission faults. 
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Integrating a similar notification module into OPC UA Publish–Subscribe would 

reduce constant polling and improve efficiency by delivering only relevant 

information. Moreover, OPC UA could enhance modularity and ensure full 

decoupling between publishers and subscribers, as well as between system 

responsibilities such as information delivery, notification, security, time 

management, and reception.  

Data Distribution Service (DDS) is applied across domains such as 

aeronautics, healthcare, and power industries [37, 38]. Designed for real‑time 

control, DDS enables fault‑tolerant exchanges with low latency and advanced 

filtering. It ensures modularity through a decoupled publish–subscribe design 

and supports time‑based operations with multiple synchronization strategies. 

Integration with TSN technology enhances time determinism [39]. Several 

DDS practices are considered valuable for OPC UA, particularly in 

strengthening real‑time network capabilities.  

The objectives were to analyze OPC UA interfacing through the publish–

subscribe paradigm, addressing real‑time constraints and role distribution, 

while considering current developments and strategies from the automotive 

sector, and also to design and implement an OPC UA pub–sub solution over 

UDP, centered on a synchronization algorithm and a multithreading broker to 

achieve real‑time responsiveness, higher efficiency, and extended QoS. The 

approach aims to minimize subscriber–publisher coupling, facilitate 

high‑speed transmission of large data volumes, and reduce network load from 

polling and filtering. Availability and safety guide the design, with emphasis 

on fault detection, tolerance, and recovery. 

 

2.2.1.1 The Publish-Subscribe Mechanism: Design and Architecture 

In the publish–subscribe paradigm, publishers continuously disseminate 

information or events, while subscribers are notified upon changes. Beyond 

simple data exchange, responsibilities should be distributed across multiple 

nodes. The emphasis shifts from node‑to‑node links to the relationship 

between information and its targets, enabling efficient distribution regardless 

of subscriber count. As suggested in [40], middleware mechanisms can 

assume roles independent of payload context, decoupling publishers and 

subscribers. This reduces computational load, improves network efficiency, 

and ensures predictable message distribution. However, reliance on single 

event servers introduces risks in large‑scale systems, as failures may cause 

data loss or downtime. For example, an OPC UA factory using only one 

publisher server for cloud interfacing is vulnerable without backup 

mechanisms. To mitigate such risks, responsibilities must be distributed 
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through middleware entities that notify subscribers and manage publisher–

subscriber interactions. Safety measures for fault detection, tolerance, and 

recovery are essential to preserve publishers/subscribers independence.  

In [30], publisher and subscriber roles are described as loosely coupled, with 

information exchange independent of subscriber count. Their relation relies on 

shared understanding of DataSets and publishing details. Message‑oriented 

middleware functions as a multicast address for UDP or as a broker for 

MQTT/AMQP. With UDP transport, publishers send data to the multicast 

address, while subscribers filter messages using DataSetMetaData, which 

must be transmitted beforehand. This one‑to‑many strategy increases 

complexity and may challenge time constraints. When encryption is added, a 

Security Key Server manages key distribution. In large systems, subscribers 

must decrypt and filter all incoming messages, creating computational 

overhead and hindering real‑time performance. Dynamic publishing with 

frequent DataSetMetaData updates further risks network overload. 

Middleware, acting as an intermediate entity, should therefore manage 

publisher–subscriber relations and, if needed, distribute DataSetMetaData to 

reduce complexity and improve efficiency (see Fig.  2.2-1). 

 
Fig.  2.2-1 Proposed OPC UA Middleware Design with Services, in real time scenarios. 

Safety measures must be continuously applied, with the entity managing 

publisher–subscriber relations verifying the capabilities of all involved nodes. 

For real‑time operation, guarantees on delivery, decryption, and filtering times 

require that these relations be persistently stored. In OPC UA publish–

subscribe, such functionality could be achieved through a PubSub Directory. 

In [40], an Event service is proposed as the entity managing publisher–

subscriber relations. Publishers share information or event types, while the 

Event service informs them of interested subscribers, enabling direct 
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notification. However, this reduces decoupling between publishers and 

subscribers. As noted, a many‑to‑many approach should be considered for 

designing robust and efficient system architectures. 

In OPC UA, subscriber‑side filtering involves multiple steps before payload 

access, often adding computational overhead and delays that hinder real‑time 

performance. When middleware is broker‑based, publishers connect to MQTT 

or AMQP entities, achieving decoupling but shifting communication to lower 

OSI layers. In this design, subscribers are MQTT/AMQP applications that 

bypass OPC UA’s higher‑layer mechanisms, meaning the publish–subscribe 

model is only partially implemented. Such broker architectures are mainly 

suited for cloud integration and heterogeneous environments, but real‑time 

guarantees become difficult. Ensuring fixed transmission cycles, fault 

detection, and message loss recovery is complex. Security is limited to 

transport‑level protection, as end‑to‑end OPC UA security cannot be 

maintained between publishers and non‑OPC UA subscribers.  

In [41], a publish–subscribe mechanism using ROS middleware is described, 

where subscriber identity and number are abstracted and managed by the 

middleware. This design allows publishers and subscribers to be replaced in 

real time. In the automotive domain, SOME/IP employs publish–subscribe for 

event exchange. Subscribers register to event groups via Service Discovery, 

which announces service availability and controls event message sequencing, 

ensuring only required messages are received. Similar discovery approaches 

exist in other protocols: DDS, for instance, discovers topics independently of 

applications, enabling entities to focus on data reception rather than search. 

This enhances decoupling and supports safety mechanisms such as 

lost‑message detection. 

 

2.2.1.2 Time Synchronization in the Context of OPC UA and TSN Technology 

In the context of TSN and OPC UA publish–subscribe, IIoT is increasingly 

focused on real‑time functionality from network to application level. OPC UA 

aims to support large‑scale, real‑time information exchange with seamless 

integration into existing architectures, while TSN provides data‑link layer 

solutions for clock synchronization and time‑accurate message delivery. Both 

evolve incrementally toward real‑time requirements. For OPC UA, achieving 

hard real‑time synchronization requires TSN, particularly its grandmaster 

clock standard, though current specifications may not fully meet large‑scale 

demands. 

Monitoring synchronization between publishers and subscribers is critical in 

complex infrastructures. Without dedicated interfaces, managing diverse time 
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bases becomes overwhelming. Services for time management and safety 

against desynchronization can enhance scalability and adoption in IIoT. 

Additional requirements include notifications for elapsed cycles to avoid 

waiting states and unnecessary polling. While OPC UA allows predefined 

publishing intervals, current mechanisms lack dedicated services to share 

them, forcing subscribers to poll UDP messages. Future improvements could 

introduce notify services and time‑triggered transmissions, reducing 

computational effort and enabling resynchronization. To ensure efficiency, 

TSN time guarantees must be clearly aligned with OPC UA layers, 

synchronizing operations within publishers and subscribers on a common time 

base (see Fig.  2.2-2). In use cases with strict time constraints, a defined time 

reference must be accessible. Details such as Ethernet hardware clocks or 

OS‑specific timers can support synchronization both internally and across 

entities. Consequently, standardized mechanisms are required to integrate 

time‑deterministic technologies. 

 
Fig.  2.2-2 Proposed design with all entities relying to a common time base. 

Both internal and external synchronization strategies must be further 

standardized through dedicated services and middleware, as seen in other 

deterministic technologies. To improve QoS in time‑based operations, the 

notion of time should be integrated at higher OSI levels within OPC UA. Future 

modules must manage and share access to a common time base, enabling 

synchronization across applications with different clocks. 

The case study presents a broker application transmitting data at fixed 

intervals, with subscribers synchronized to read messages at correct moment. 

A synchronization algorithm was developed to ensure timely reception, 

minimize polling, and filter only the relevant messages for each subscriber. 
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2.2.1.3 Case Study 

The case study introduces a multithreading broker application within the OPC 

UA publish–subscribe paradigm, using UDP as the transport protocol and 

emphasizing real‑time constraints and role distribution. With multiple entities 

involved, the design assigns each to a separate device operating on a 

Linux‑based OS (see Fig.  2.2-3). 

 
Fig.  2.2-3 General Architecture of the Case Study. 

The publisher is responsible for delivering data without knowledge of the final 

receivers. It must first be configured and initialize the publish–subscribe 

connection via the UA_Server_addPubSubConnection method. In this case, 

the publisher transmits information to a single entity, the broker application. 

The next step is creating a WriterGroup, which defines parameters for network 

messages. For real‑time constraints, the key parameter is the publishing 

interval in UA_WriterGroupConfig. The payload, represented as a hexadecimal 

number (e.g., 0xDC), is encapsulated in a DataSetMessage, independent of 

how data is split among subscribers. For example, each two bits may 

correspond to sensor values collected by a field device. While the publishing 

interval is set according to publisher needs, it should align with consumer 

requirements in practice. Finally, the publisher connects directly to the broker 

using its IP and port, without requiring a multicast address. 

The broker application enhances efficiency by filtering and routing relevant 

information while synchronizing entities. It comprises two components: one 

receives data from the OPC UA publisher, and the other republishes extracted 

data at defined intervals to subscribers. Most filtering occurs at this stage of 

exchange. Since receiving and transmitting involve distinct time constraints 

and tasks, a multithreading design was adopted to improve performance and 

synchronization. Although the SDK [33] lacks native multithreading support, 

the broker’s high‑level architecture separates its two components into 

independent threads (see Fig.  2.2-4).  
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Future subscribers are expected to provide the broker with timing details, 

targeted information, and unique identifiers through a one‑shot transmission 

based on the classic client–server paradigm. Configuration may occur via a 

JSON file at runtime or through periodic communication with a dedicated 

server holding consumer details. In the broker implementation, these 

parameters, timing, information targets, IDs, are hard‑coded for the use case. 

 
Fig.  2.2-4 Architecture and Interaction of the Broker Application. 

The first thread manages the subscriber component, responsible for extracting 

targeted data according to subscriber preferences. Execution begins by 

initializing a PubSubConnection with the OPC UA publisher over a unicast 

address. Once connected, the component listens for relevant network 

messages. Subscription is implemented classically, interrogating incoming 

traffic with minimal recurrence to avoid loss of DataSetMessages, while 

parsing message fields and filtering data types. 

The second thread manages the publisher component. Depending on 

subscriber count and required time intervals, it initializes an OPC UA publisher 

instance with multiple WriterGroups, each configured for specific publishing 

rates. Extracted data is buffered before transmission, enabling historical 

access and improving availability. Prior to assignment to a DataSet, an 

encoding step adds a unique subscriber ID. In the case study, IDs are defined 

as hexadecimal values (0xF for subscriber1, 0xA for subscriber2). The 

encoding shifts extracted data by four bits and inserts the ID into the least 

significant bits. Thus, the payload 0xDC becomes 0xCF for subscriber1 and 
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0xDA for subscriber2. Following encoding, the payloads are encapsulated in 

DataSetMessages and published at distinct intervals by the WriterGroups. 

Transmission occurs via a multicast address, enabling one‑to‑many 

communication and shared access among subscribers, as described in [30]. 

In case study 2, two subscriber entities were implemented to consume 

payloads from the OPC UA publisher, each with distinct requirements for 

targeted data and real‑time behavior. Subscriber1 expected updates every 

second, while Subscriber2 required data every three seconds; the design also 

proved functional with intervals below 10 ms. The broker’s main purpose was 

to prevent continuous network interrogation and reduce filtering by leveraging 

the publisher’s predefined intervals. On the subscriber side, message 

reception was executed only at the expected time intervals. Additional 

mechanisms were introduced to handle potential desynchronization. 

In some scenarios, proper timing configuration for both broker and subscribers 

is insufficient. Real‑time synchronization becomes essential when no common 

time base exists and time references are not continuously exchanged. The 

challenge lies in dynamically aligning transmission and reception intervals 

across separate entities. Polling describes subscriber desynchronization from 

the broker and occurs in two cases: when the subscriber receives data 

classified as invalid (e.g., malformed or improperly executed network 

messages), respectively when the subscriber receives a valid message, but of 

a different type than expected under OPC UA protocol. In both cases, the 

arrival time of the desired message is unpredictable, requiring repeated 

execution of the receive function. Such polling states can only be avoided 

through synchronization between the sending and receiving moments. 

From the subscriber’s abstract perspective, two scenarios emerge based on 

message validity and recurrence. Messages encoded with the subscriber’s ID 

are classified as valid, while all others are considered invalid regardless of 

subscriber count. For example, recurrence intervals were set at 100 ms for 

valid messages and 1000 ms for invalid ones, and vice versa. (see Fig.  2.2-5). 

Scenario 1 consists of when an invalid message or polling state is detected, 

and consequently the delay is set to zero, allowing immediate receive 

operations until a synchronization event occurs (e.g. reception of a valid 

message). Once synchronized, the delay returns to the subscriber’s predefined 

interval, ensuring efficient operation without unnecessary polling. Stable 

networks maintain synchronization, with desynchronization possible only 

when subscriber delivery intervals overlap. 
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Scenario 2 mirrors Scenario 1, but intersections between broker delivery 

intervals occur at each cycle. Dynamic delay adjustment during invalid 

messages resynchronizes broker and subscriber, maintaining recurrence and 

avoiding message loss. 

 
Fig.  2.2-5 The 2 scenarios from the Subscriber Perspective regarding recurrence and validity of the messages. 

In both scenarios, the synchronization algorithm proved efficient, with testing 

confirming correct behavior in broker and subscriber operations. For universal 

UDP broker solutions in OPC UA, encoding of desired information is critical to 

synchronization. If the broker shuts down, subscribers enter polling until a 

valid message is received, then re-enters into normal pub-sub operation. 

 

2.2.1.4 Results 

During the case study, the open62541 SDK lacked a finalized Subscriber API. 

Considering the receiving solution compliant with [30], lower software layers 

may still perform network interrogations or buffer multicast traffic 

independently of the application layer. To address this, a polling state was 

defined at the application level, with the goal of ensuring subscribers process 

only relevant messages. This improves upon the receive concept described in 

[30], where subscribers must handle irrelevant or unknown messages, and 

aligns with the implementation in [33]. 

After implementation, several results were observed: 
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- Publisher abstraction – A single published DataSet transmitted 

information to two subscribers with different preferences and timing, 

simplifying configuration and enabling efficient large‑scale data transfer. 

- Multithreaded broker – Independent components improved speed and 

responsiveness. 

- Data buffering – The broker stored data in transit, providing an essential 

service often missing in OPC UA. 

- Backup functionality – The broker could republish stored data if the 

publisher failed, assuming publishing roles and enabling safety 

measures to notify consumers of malfunctions. 

- Stable delivery – Encoding and synchronization ensured data was 

provided at consistent intervals, avoiding unnecessary transmission 

rates. 

- Subscriber decoupling – Subscribers remained unaware of publisher 

details, reinforcing the loosely coupled design described in [30]. 

- Synchronization algorithm efficiency – Polling and excessive filtering 

were minimized, reducing computational effort and resource usage. 

- Real‑time assurance – Synchronization guaranteed timely data delivery, 

with resync options supporting controller‑to‑controller scenarios. 

- OPC UA consistency. 

Some results are depicted in Fig.  2.2-6 - Fig.  2.2-9, the Publisher sending and 

the Broker filtering and transmitting forward, followed by each Subscriber 

entering in stable state after a synchronizing procedure. 

 

 
Fig.  2.2-6 The data sent to the broker from the terminal of the Publisher. 

 

 
Fig.  2.2-7 Terminal of the Broker App receiving data from the Publisher and transmitting it to the subscribers. 
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Fig.  2.2-8 Terminal of Subscriber1 receiving the desired data at time intervals of 3 second. 

 
Fig.  2.2-9 Terminal of Subscriber2 receiving the desired data at time intervals of 1 second. 

An analysis of the results, highlighting advantages and disadvantages from a 

development perspective, is presented in Table 2-1. 

Table 2-1 Case study results analysis 

Entity Advantages Disadvantages Achievements 

OPC UA 

Publishers 

-moderate difficulty in 

implementation 

-easy configuration for 

different subscribers 

 -easy way of sending 

larger amounts of 

data for multiple 

subscribers with 

different expectation 
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with different 

expectation 

-totally decoupled 

from the consumers of 

the information 

 

Broker App -multithreading 

capabilities 

-real time capabilities 

-high complexity in 

implementation 

-an initial first step 

is needed for 

obtaining 

subscribers 

preferences and IDs 

(hard-coded 

information in the 

current 

implementation) 

 

-real time behaviour 

and synchronization 

with the subscribers 

-data buffering 

-backup publisher 

-safety capabilities in 

case the publisher is 

shutting down 

OPC UA 

Subscribers 

-easy/moderate 

difficulty in 

implementation 

-totally decoupled 

from the provider of 

the information 

-synchronization 

capabilities based on 

the described 

Synchronization 

Algorithm 

- an initial first step 

is needed for 

transmitting 

preferences and ID 

(hard-coded 

information in the 

current 

implementation) 

-real time behaviour 

and synchronization 

with the Broker App 

-less polling of the 

network 

-less filtering for the 

desired information 

 

 

2.2.2 Approaching OPC UA Publish–Subscribe in the Context of UDP-Based Multi-Channel 

Communication and Image Transmission 

Industrial image processing emerged out of necessity but was adopted without 

full integration into industrial protocols or production processes. Currently, 

communication with other systems relies on MES binary request–approval 

procedures and bit‑wise result storage, while image storage and transfer lack 

protocol standardization. Despite this, image processing remains closely tied 

to production lines. For example, [43] demonstrates hydraulic axial pump 

diagnosis by converting signals into images via continuous wavelet transform 

and extracting features from time–frequency representations. Similarly, [44] 

applies image processing and deep learning to detect deformation in 

pantograph contact strips of railway vehicles. In [K‑20], the authors present 

a low‑cost OpenCV‑based image processing solution for detecting defects in 

automotive parts manufacturing, specifically faulty or missing pins, clips, and 
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board cracks in ECUs. Most studies treat industrial processes and image 

transmission as separate domains. In augmented reality, [45] proposes 

Node‑RED with MQTT for communication with mechatronic devices, though 

image‑related tasks remain focused on the iOS mobile application. 

Beyond production, the automotive industry emphasizes autonomous and 

enhanced driving, concepts closely tied to image processing, 

car‑to‑infrastructure and car‑to‑car communication, and safety procedures. 

Significant progress has been achieved in image processing for autonomous 

driving [46], while research also targets safety improvements, such as 

detecting infrastructure cracks [47] and accident identification from traffic 

images [48]. Intelligent roadside devices now process traffic data using the 

YOLO‑CA model, forwarding results to central systems for rescue operations 

and signaling vehicles. Although [48] focuses on image processing, it extends 

into car‑to‑infrastructure communication. Similarly, [49] explores queue 

length estimation via image processing, though results remain 

simulation‑based. Since interoperability in car‑to‑infrastructure 

communication requires industrial protocols, works such as [K‑21] and [K‑30] 

propose OPC UA as a standardized solution. 

Studies such as [50] examine industry standards compliance through OPC UA. 

Recent specifications (e.g. [30]) enable advancement toward the publish–

subscribe paradigm, further developed in [K‑21] and [K‑19]. Within this 

context, the objectives of research [K‑18] are: to extend [K‑21] by analyzing 

publish–subscribe under real‑time constraints and higher data volumes, 

including long‑term single transmissions; to investigate multi‑channel UDP 

communication to reduce data transfer duration; to broaden OPC UA 

applicability to image transmission; to apply the mechanism without hardware 

constraints, validated through case studies in automotive end‑of‑line testing 

and car‑to‑infrastructure communication. 

Research and industrial testing of OPC UA publish–subscribe applications 

employ diverse hardware, though real‑time capabilities favor low‑cost, 

resource‑constrained embedded devices in controller‑to‑controller scenarios. 

For example, [51] used multiple Xilinx boards to run publisher–subscriber 

exchanges of UADP messages with time analysis, while [52] implemented OPC 

UA entities on Raspberry Pi 3B+ using open‑source stacks to measure 

efficiency. TSN provides time guarantees through specific standards. As noted 

in [53] and [54], OPC UA with TSN is expected to extend to field devices, while 

[55] highlights real‑time applicability but only via simulations. Studies confirm 

that synchronization, low latency, and flexibility can be achieved by adapting 

TSN standards to OPC UA [51], [56]. 
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With IIoT growth, the number of networked devices and required operations 

increases, making data management and extraction from distributed sources 

critical [57]. Complex architectures must evolve to meet reliability, 

robustness, and efficiency demands. OPC UA publish–subscribe enhances 

system capabilities, opening new use cases. In this context, an image 

transmission application based on OPC UA was implemented in to analyze the 

mechanism’s potential from multiple perspectives. 

 

2.2.2.1 Image-transmission over OPC UA Publish-Subscribe concept 

Image transmission and processing are increasingly present in IIoT 

applications. Research has explored integrating OPC UA with automotive 

communication protocols, enabling publish–subscribe solutions for smart 

infrastructures [K‑30], [K‑21]. In automotive manufacturing, image 

processing is widely applied. For example, [K‑20] describes automatic optical 

inspection (AOI) during ECU board end‑of‑line testing and packaging. 

Companies test tens of thousands of products daily using image processing to 

detect defects, while packaging is also image‑assisted. These solutions 

generate images alongside bitwise/tag‑based results, which are integrated 

into MES communication. However, image transfer often occurs in a 

rudimentary manner without standardized industrial protocols. An end-of-line 

process flow is presented in Fig.  2.2-10, where image processing is an 

important part for testing and packaging in automotive parts manufacturing. 

After pin insertion and ECU enclosure positioning, boards are tested with AOI 

to detect defects. The AOI system communicates with the MES, requesting 

approval to start testing and transmitting bitwise results indicating pass or 

fail. For Industry 4.0 integration, OPC UA represents the optimal protocol for 

image processing, provided it meets real‑time, speed, and volume 

requirements. Building on [K‑19] and [K‑21], bitwise/tag‑based 

communication ensures real‑time constraints through the publish–subscribe 

mechanism. The objective is to extend OPC UA publish–subscribe beyond prior 

work to support long‑term, high‑volume, and faster data transmission, 

enabling full integration of image processing within the production flow. 

Complete vertical/horizontal interoperability could be achieved using OPC UA. 

As depicted in Fig.  2.2-10, after testing, boards are transported and placed 

into packaging boxes, with ECU counting performed through image 

processing. Once a box reaches capacity, a final image of its contents is stored 

before sealing and shipment. In this case, full OPC UA interoperability is also 

required, as image sizes are larger while transmission intervals are longer. 
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Fig.  2.2-10 End-of-line ECU testing using image processing in automotive manufacturing. 

For image processing, the YOLOv3 model [58] was employed. YOLO uses a 

single deep convolutional network that divides the input image into a grid, 

with each cell predicting bounding boxes and object classes. Candidate boxes 

are consolidated through post‑processing, and training on the COCO dataset 

enables detection across 80 object classes with reduced false positives. 

Additional operations relied on OpenCV, a cross‑platform library widely used 

for real‑time computer vision. OpenCV supports major deep learning 

frameworks such as PyTorch, TensorFlow, Caffe under the Apache2 license. 

The image transmission application consists of two OPC UA instances, a 

publisher and a subscriber, designed to send images via the Pub‑Sub 

mechanism. Each pixel is published individually and reconstructed at the 

subscriber side once all pixel values are received. Transmission speed and 

image quality serve as key indicators of reliability and efficiency. Tests were 

conducted with multiple images of varying resolutions and three application 

versions, each using different publishing intervals to evaluate how delivery 

speed affects image quality. Publisher and subscriber exchange 

DataSetMessages, each containing a pixel value in byte format (8‑bit integer, 

range 0–255), generated by the Publisher’s DataSetWriter. UDP was used as 

the transport protocol. The complete transmission process follows four main 

steps, as in Fig.  2.2-11. 

 
Fig.  2.2-11 OPC UA Publish-Subscribe image transmission steps. 
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Transmission durations and scenario‑specific operations were measured using 

custom Linux timer functions. Networking tests were conducted on 2.4 GHz 

and 5 GHz networks. Although OPC UA Pub‑Sub is real‑time oriented, it cannot 

guarantee timing without TSN integration. Desynchronization may occur 

between publisher and subscriber devices. The Pub‑Sub design primarily 

targets one‑to‑many communications. Yet, to meet real‑time demands and 

avoid latency or desynchronization, multiple independent Pub‑Sub channels 

can be deployed. This approach offers scalability for industrial operations that 

were previously infeasible under the traditional client–server paradigm. 

 

2.2.2.2 Architecture and Implementation 

The OPC UA image transmission application consists of two components: a 

publisher on the transmitting device and a subscriber on the receiving device. 

Additional operations, such as image segmentation before transmission and 

reconstruction afterward, must follow a defined sequence. 

The first step in image segmentation and storage involves dividing the image 

into approximately equal pixel blocks. Each block is stored in a separate 

buffer, later accessed by the OPC UA publisher during transmission. 

Segmentation depends on both the number of Pub‑Sub channels selected and 

the overall image size. Step 4 is the reverse process of the first step, the 

image reconstruction. The subscriber simultaneously receives image 

segments across multiple Pub‑Sub channels and stores them in dedicated 

buffers. After transmission, these buffers are combined into a pixel file, with 

each segment placed in the correct order. When all channels transmit 

successfully and pixel values align properly, the image is accurately 

reconstructed on the receiver. The architecture is illustrated in Fig.  2.2-12. 

 
Fig.  2.2-12 General system architecture of the image transmission. 

The publishing and receiving processes are synchronized to exchange pixel 

values at defined intervals, though each device maintains its own time base. 

This lack of a common reference can affect application behavior, particularly 
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when publishing intervals fall below 10 ms. While minor pixel losses may not 

significantly impact image quality, a safety mechanism was developed for the 

subscriber side. Based on the target image resolution, each buffer 

corresponding to a Pub‑Sub channel is tested and all received operations are 

counted. At transmission end, if buffer values do not match the expected pixel 

count, default values are inserted to complete the buffer. This ensures image 

reconstruction even when transmission is incomplete. By assessing 

reconstructed image quality, observers can identify which channels 

experienced desynchronization, losses, and approximate when they occurred. 

 

2.2.2.3 Case Study 1 - Image Transmission over One and Four Pub-Sub Channels 

A complete image transmission over OPC UA publish–subscribe was tested 

using a single channel, with a medium‑large color image successfully 

transmitted. In the case of Fig.  2.2-13 and Fig.  2.2-14, Wifi connection was 

used, as a worst case physical support scenario. The quality of received 

images was evaluated against the originals. Publishing intervals were set 

between 1 ms (per pixel value) and 5 ms to ensure stability and maximize 

fidelity to the target image. A total of 773,490 pixel values were transmitted 

between publisher and subscriber at varying intervals. Results demonstrate 

that the system supports lengthy transmissions, approximately 12.9 minutes 

at 1 ms/pixel and 64.5 minutes at 5 ms/pixel, while successfully delivering 

complete images. 

The second phase of the case study addresses a more realistic industrial 

scenario, using a lower‑resolution black‑and‑white image to reduce the 

number of pixel values transmitted and achieve a practical transmission 

interval. The selected image contains 46,225 pixel values as payload. The 

results are in Fig.  2.2-15 and Fig.  2.2-16. 

 
Fig.  2.2-13 The received image and the target image at 1 ms/pixel_value recurrence (phase 1). 
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Fig.  2.2-14 The received image and the target image at 5 ms/pixel_value recurrence (phase 1) 

 
Fig.  2.2-15 The received image and the target image at 1 ms/pixel_value recurrence (phase 2). 

 
Fig.  2.2-16 The received image and the target image at 4 ms/pixel_value recurrence (phase 2) 

In the second phase, the identical image was successfully received with a 4 ms 

publishing interval. A faster transmission was inherent, lowering the 

probability of desynchronization compared to phase 1, even under similar 

recurrence conditions. From Fig.  2.2-15, desynchronization occurred in the 
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third quarter of the image with less degree of alterations. With the phase 2 

target image, transmission time improved substantially: about 47 seconds at 

a 1 ms interval and 3.12 minutes at a 4 ms interval  

The next step meant to increase the number of Pub-Sub channels to 4. 

Publishing intervals were configured identically to ensure that the duration of 

all four transmissions remained approximately equal. The results proved that 

the transmitter and received images were identical (the same as Fig.  2.2-16) 

at a publishing interval of 1 ms (1 millisecond/pixel value for all the 4 

channels). A full transmission was obtained in approximately 12 sec.  

 

2.2.2.4 Case Study 2 - Image Transmission over Twenty Pub-Sub Channels 

The case study seeks to achieve feasible transmission times while 

demonstrating the scalability of multi‑channel OPC UA publish–subscribe 

communication. Its objectives include integrating the concept into industrial 

scenarios using relevant process images and evaluating the impact of network 

capacity during implementation.  

Case study 2 refers to 3 scenarios: the first consists of the previously 

discussed car-to-infrastructure communication, the second analyses the 

transmission of counted ECU boards image at the EoL in automotive 

manufacturing, while the third targeted ECU automatic optical inspection 

results in an automotive production line.     

The goal was to obtain an image delivery time of under 3 sec. for the car- to-

infrastructure communication, under 12 sec. for the EoL packaging boxes, and 

under 3 sec. the automatic optical inspection results.  

For the car‑to‑infrastructure communication scenarios were, using 20 Pub‑Sub 

channels with a 1 ms publishing interval achieved delivery in ~2.4 seconds, 

producing an image identical to the target. These results confirm the 

scalability of the multi‑channel transmission concept, enabling flexible 

configurations for future applications.  

For the final packaging boxes, ECUs were continuously counted, before 

delivering them to clients. Once the set limit is reached, the MES is notified 

that packaging is complete and the final image is stored locally. In the 

box‑filling cycle, execution times are as follows: insertion of a new ECU 

requires at least 12 seconds, detection of a new box by the optical inspection 

system takes ~6 seconds, and complete filling, depending on box size and ECU 

count, exceeds 2.5 minutes. OPC UA multi‑channel publish–subscribe image 

transmission results were promising. The target image was converted to 

grayscale and delivered fault‑free to the destination, with the received image 
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shown in Fig.  2.2-17. The complete image transmission was achieved in 

7.85 sec. From a time perspective, this performance enables transmitting an 

image for each board inserted into the packaging box. 

 
Fig.  2.2-17 OPC UA Publish-Subscribe 20 channel image transmission for packaging boxes in the automotive 

manufacturing - the received image in grayscale and the target image. 

For the ECU EoL automatic optical inspection from [K‑20], the image‑based 

defect detection was achieved in 6.5 seconds. Considering other production 

line procedures, approximately 12 seconds are available to transmit inspection 

images within each board testing cycle. Only defect images (negative fault 

detection results) are stored and transmitted, typically 1–2 per cycle, since a 

single image may capture multiple defects in an analyzed area (e.g. a 

connector). With the implementation of 20‑channel OPC UA publish–subscribe 

transmission, results were encouraging: the target image was converted to 

grayscale and transmitted completely to the destination. The received image  

in comparison with the target one is shown in Fig.  2.2-18. 

A full image transmission was realized in 2.52 sec. Given the 12 sec. window 

in each board testing cycle, approximately 4 images can be transmitted using 

the 20‑channel solution. 

 
Fig.  2.2-18 OPC UA Publish-Subscribe 20 channel image transmission for ECU automatic optical inspection process 

in the automotive manufacturing: the received image in grayscale and the target image. 
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2.2.2.5 Results of the Study 

Each case study provided key insights into the mechanism’s stability and 

robustness, the factors influencing transmission in industrial contexts, and the 

application’s performance, confirming its potential to meet objectives in a new 

domain of the OPC UA protocol. In Table 2-2, a comparative analysis of all case 

study outcomes highlights the advantages and disadvantages of each 

application version within its designated context. 

Table 2-2 Outcome analysis for the case studies 
Case 

study 

Number of 

Pub-Sub 

Channels 

Total time for a 

full transmission 

of an identical 

image 

Factors that can 

produce instability 

Conclusions 

1-a 1 64.5 minutes for 
phase 1  
(publishing interval 
of 5 ms / pixel 
value) 

 
3.12 minutes for 
phase 2  
(publishing interval 
of 4 ms / pixel 
value) 

- high volume of 
information needed 
to be transmitted by 
1 channel 

- high length of the 
transmission 
increase the 
probability of 
desynchronization 
between devices 

- not feasible for 
industrial processes 

1-b 4 12 seconds  
(publishing interval 
of 1 ms / pixel 
value) 

- lower volume of 
information needed 
to be transmitted by 
1 channel 

- not guaranteeing a 
low probability of 
desynchronization 
between devices 

- improved 
performances but far 
from the desired 
outcome 

2 20 2.4 seconds  
(publishing interval 
of 1 ms / pixel 
value) 

- adequate volume 
of information 
needed to be 
transmitted by 1 
channel  

- guaranteeing very 
low probability for 
desynchronization 
between devices 

- feasible in industrial 
scenarios for specific 
processes 
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2.2.3 DDS and OPC UA Protocol Coexistence Solution in Real-Time and Industry 4.0 Context 

Using Non-Ideal Infrastructure 

Following [K-19] and [K-18], the next step was to cover other important 

component of the OT level, the industrial robots, respectively to establish 

solution for interoperation. Manufacturing production lines incorporate robots, 

co‑bots, and compact units, where future architectures will likely adopt the 

real‑time DDS protocol defined by the Object Management Group (OMG) (see 

Fig.  2.2-19). In this context, analyzing the coexistence of OPC UA and DDS 

publish–subscribe solutions under real‑time industrial requirements is 

essential. This chapter represents work [K‑16], presenting a tool and 

methodology to evaluate the real‑time performance of both protocols, tested 

in parallel and within a gateway configuration.  

 
Fig.  2.2-19 Schematic view of OPC UA—DDS protocol coexistence in the Industry 4.0 context. 

Due to the slow adoption of TSN in industry, faster approaches for real‑time 

constraints on operating systems and equipment are required. Therefore, 

there is a need to: define criteria for evaluating DDS and OPC UA in non‑ideal 

systems facing industrial challenges, analyze their real‑time behavior, propose 

an architecture enabling parallel use and interaction of both protocols, 

implement a DDS–OPC UA gateway application. 

DDS employs a data‑centric model with a global data space (GDS) accessible 

to all entities, where information is propagated once roles are defined. Its 

publish–subscribe paradigm is topic‑based, with subscribers expressing 

interest and matched to publishers. DDS also supports request/reply 

communication, ensuring efficiency in one‑to‑many, one‑to‑one, and 

many‑to‑many scenarios. Entities can be grouped into domains, creating 

isolated virtual spaces for flexible and complex data exchange. 
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Communication relies on the Real‑Time Publish–Subscribe (RTPS) protocol, 

ensuring interoperability over standard networks while meeting real‑time 

requirements. At the transport layer, RTPS operates over TCP/UDP/IP, 

maintaining portability and compatibility across DDS implementations. On 

Linux systems, DDS provides configurable blocking intervals for 

resource‑contending functions, with prioritization mechanisms applied when 

limits are exceeded. The eProsima Fast DDS [59] open‑source SDK was 

employed for DDS entity implementation. Its API is divided into two layers, 

one tied to the wire protocol and another abstracting DDS concept, while 

built‑in mechanisms ensure real‑time behavior. For high‑volume, time‑critical 

communication, DDS provides the Persistence Service, enabling rapid 

recovery after shutdown. By storing context details and the last notified data 

changes between components, the system can quickly restore its previous 

communication state, meeting hard real‑time constraints. 

DDS implementations span diverse domains and use cases. In [60], the 

advantages of the publish–subscribe paradigm and RTPS adoption for 

interoperability across vendors are highlighted, with applications such as 

underwater vehicle data exchange demonstrating feasibility in extreme 

environments. In [61], challenges in configuring QoS for real‑time systems 

and the absence of DDS standards are noted, increasing complexity in 

understanding dynamic models. A framework‑based tool is proposed to 

enhance software reusability across heterogeneous IoT architectures. 

ROS 2, an open‑source framework for complex robotic applications, is gaining 

traction in both research and industry [62,63]. DDS has been validated as its 

communication middleware [64], enabling decentralized communication and 

supporting hard real‑time requirements. DDS in ROS 2 defaults to 

asynchronous publication, where data are queued and handled by background 

threads, suitable for non‑time‑critical nodes. Synchronous publication, 

controlled by the main thread, ensures precise timing and minimal latency for 

time‑critical events. ROS 2 adoption in academia remains early, hindered by 

migration challenges from ROS 1 [65]. Nonetheless, its Industry 4.0 oriented 

features are expected to drive replacement. In [66], DDS is emphasized as 

central to ROS 2 objectives, including multi‑robot cooperation, embedded 

systems with limited resources, real‑time constraints, and communication 

over unstable networks.  

 

2.2.3.1 Envisioned Architecture for the Analysis  

To advance industrial solutions, a multi‑node mirror architecture was defined 

with three DDS nodes and three OPC UA nodes, each assigned specific roles 
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on native or virtualized Linux systems. The architecture (see Fig.  2.2-20) 

supports both performance comparison and gateway‑based interaction 

scenarios, aiming to confirm compatibility and feasibility between the two 

protocols while establishing general criteria and expectations. Rather than 

relying on trial‑and‑error, the research community must provide neutral 

guidelines, performance metrics, and architectural perspectives to highlight 

advantages and limitations comprehensively.  

 
Fig.  2.2-20 The envisioned architecture for analysis. 

OPC UA and DDS control nodes act as primary data consumers, running on 

Raspberry Pi 4 devices with native Linux systems. In real scenarios, they 

represent the main control segment (e.g., PLC, robot, or production line 

controllers). Each node integrates two communication subcomponents, the 

subscriber receiving updates from the update node at defined intervals, and 

the publisher forwarding information to diagnose nodes for safety or 

diagnostic operations. Update nodes serve as the main producers and 

distributors, accessible only to control nodes. Diagnose nodes receive data 

exclusively from control nodes, performing validation or acting as gateways 

for OPC UA–DDS interaction (e.g., transferring PLC data via OPC UA to a 

DDS‑controlled motor). Gateway configurations rely on shared buffers 

between complementary entities, ensuring architectural flexibility. 

Evaluation criteria, defined in [K‑16], include first real‑time responsiveness 

testing of publish/subscribe operations at device level, compared against ideal 

expectations. Percentage‑based results estimate performance in industrial 

scenarios, highlighting similarities and differences between OPC UA and DDS 

under identical conditions, confirming their compatibility even in non‑ideal 

setups. Also, include data buffering analysis, comparing received values with 
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expected amounts. This ensures not only execution monitoring but also 

acknowledgment of data integrity, with network stability as a critical factor. 

 

2.2.3.2 Case Studies and Results   

Two case studies were conducted. The first examines how DDS and OPC UA 

respond under standard OSs without enhanced real‑time capabilities and 

non‑ideal networks lacking transmission guarantees, across varying time 

intervals. The second introduces a gateway solution for protocol interaction, 

switchable without architectural changes. 

Case study 1 focuses on behavior analysis of both protocols. Evaluation criteria 

confirm comparable responses, supporting future cross‑domain architectures 

that integrate DDS and OPC UA. In non‑ideal infrastructures, real‑time 

performance declines below 10 ms expectations, this study quantifying 

degradation at 10, 5, 2, and 1 ms intervals. The first criterion measures 

function calls executable as intervals shorten, with results obtained via a 

custom scheduler running independently from communication operations. A 

clearer view on each multithreaded node application is shown in Fig.  2.2-21. 

 
Fig.  2.2-21 Multithreading nodes from an architectural perspective. 

Functions call verification process results are shown in Table 2-3 for DDS, and 

in Table 2-4 for OPC UA for the first criteria. The tables present success rates 

for each time recurrence.  

The second criteria concentrates on data-buffering mechanism, to highlight 

OS and device desynchronization influence on receiving data (see results in 

Table 2-5). 
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Table 2-3 DDS Nodes 

DDS Update Node – Virtualized Linux OS – Publish Operation 
Publish Operation – Recurrent Execution Check 

10 ms 5 ms 2 ms 1 ms 
≈ 100 % ≈ 90 % ≈ 74 % ≈ 64 % 

TOTAL Number of Tests : 2790 

DDS Control Node – Native Linux OS – Publish Operation 
Publish Operation – Recurrent Execution Check 

10 ms 5 ms 2 ms 1 ms 

≈ 100 % ≈ 93 % ≈ 84.6 % ≈ 77 % 

TOTAL Number of Tests: 2865 
DDS Control Node – Native Linux OS – Subscribe Operation 

Subscribe Operation – Recurrent Execution Check 

10 ms 5 ms 2 ms 1 ms 

≈100 % ≈ 85 % ≈65 % ≈48.5 % 

TOTAL Number of Tests: 2805 

DDS Diagnose Node – Virtualized Linux OS – Subscribe Operation 
Subscribe Operation – Recurrent Execution Check 

10 ms 5 ms 2 ms 1 ms 

≈100 % ≈85 % ≈65 % ≈47 % 

TOTAL Number of Tests: 3015 

 

Table 2-4 OPC UA Nodes 

OPC UA Update Node – Virtualized Linux OS – Publish Operation 
Publish Operation – Recurrent Execution Check 

10 ms 5 ms 2 ms 1 ms 

≈100 % ≈95 % ≈81.2 % ≈56 % 

TOTAL Number of Tests: 2685 

OPC UA Control Node – Native Linux OS – Publish Operation 
Publish Operation – Recurrent Execution Check 

10 ms 5 ms 2 ms 1 ms 

≈100 % ≈100 % ≈87 % ≈56 % 
TOTAL Number of Tests: 2970 

OPC UA Control Node – Native Linux OS – Subscribe Operation 
Subscribe Operation – Recurrent Execution Check 

10 ms 5 ms 2 ms 1 ms 

≈100 % ≈100 % ≈91 % ≈85 % 

TOTAL Number of Tests: 3015 
OPC UA Diagnose Node – Virtualized Linux OS – Subscribe Operation 

Subscribe Operation – Recurrent Execution Check 

10 ms 5 ms 2 ms 1 ms 

≈100 % ≈87.5 % ≈77% ≈64 % 

TOTAL Number of Tests: 3015 

Table 2-5 Data buffering success rate 

 OPC UA Control Node OPC UA Diagnose Node DDS Control Node DDS Diagnose Node 

10 ms 95% 93% 91% 91% 

5 ms 95% 86% 83% 83% 

2 ms 86% 76% 64% 64% 

1 ms 77% 62% 43% 43% 
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Subscriber‑side data buffering results confirm the findings from recurrent 

function call verification. Both criteria show proportional outcomes, with lower 

percentages for buffering, validating the added impact of network stability on 

data exchange beyond OS real‑time limitations. 

The second case study addresses the gateway application, which enables 

configurable data exchange between control nodes. Results highlight the 

influence of device desynchronization and network instability. Data 

propagation through the multi‑node architecture is observable via the digital 

signal generated by the DDS control node from OPC UA payloads (see Fig.  

2.2-22). At 100 ms recurrence, data transmission is accurate. For intervals 

below 10 ms, the gateway maintains delivery, but closer to 1 ms external 

factors, such as delayed OS responses across nodes, become significant. Since 

the signal depends on multiple node exchanges, any delay perturbs payload 

delivery, increasing the risk of inaccuracies.  

 
Fig.  2.2-22 Generated Digital Signal based on payload delivered by the Gateway Application at 10ms recurrence. 

 

2.3 Modern Protocols Emerging and Coexistence in the Automotive Sector. 

The current chapter continues the investigation of concepts from 2.1 and 2.2, 

but oriented towards the automotive sector. With the mentioned advances in 

the area of OPC UA interfacing and the continuously growing requirements of 

the industrial automation world, combined with the more and more complex 

configurations of ECUs inside vehicles and services associated to car to 

infrastructure and even car to car communications, the gap between the two 

domains must be analyzed and filled. This gap occurred mainly because of the 

rigidness and lack of transparency of the software-hardware part of the 

automotive sector and the new demands for car to infrastructure 

communications. Analyzing the VSOME/IP notify–subscribe mechanism, a 

VSOME/IP–OPC UA gateway can bridge protocol gaps between automotive and 

automation domains. Compatibility and real‑time responsiveness must be 

assessed within diverse service‑oriented architectures for automotive IoT 

Ethernet communication. This feasibility study is realized through a 

multi‑protocol gateway enabling data exchange among SOME/IP, DDS, and 
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eCAL entities for future communication scenarios. In this context, section 

2.3.1 depicts the findings from works [K-15], [K-21], [K-30].  

As automotive systems transition to zonal and software‑defined architectures, 

efficient and adaptable communication protocols are increasingly critical. Case 

study validation is essential to assess middleware suitability for real‑world 

integration. Section 2.3.2 presents findings from [K‑2], introducing Zenoh as 

a lightweight, data‑centric protocol built on modern networking paradigms. 

Zenoh was implemented in an automotive scenario with distributed zone 

controllers and an in‑vehicle server, with DDS serving as a benchmark due to 

its proven performance in prior research. Experimental results highlight 

Zenoh’s strengths in message integrity and resource efficiency, particularly 

under high‑frequency data transmission. Unlike traditional middleware, Zenoh 

demonstrates strong adaptability in distributed environments with limited 

computational resources. 

 

2.3.1 Some/IP, DDS, OPC UA in Automotive 

Automotive developments increasingly emphasize centralized and integrated 

control of dynamic environments. V2X technology enables vehicle‑to‑vehicle 

(V2V) and vehicle‑to‑infrastructure (V2I) communication via wireless 

networks, with control centers collecting safety data (accidents, traffic, 

weather) through LTE, CCTV, and GPS [69]. Premium vehicles now integrate 

over 100 ECUs, driving demand for inter‑ECU communication. Gateways 

remain critical, ensuring reliable message transmission across heterogeneous 

networks. For example, [70] describes a gateway supporting CAN, Wi‑Fi, and 

RS‑232. Research also explores risk models for intelligent transportation 

systems [71] and reinforcement learning for connected vehicle control at 

intersections [72]. OPC UA is increasingly recommended for automotive 

communication, including traffic signal integration [73]. Studies highlight 

converting intra‑car CAN systems into OPC UA, with gateway servers 

implemented using Unified Automation C# SDK [74]. Broader perspectives on 

new in‑vehicle protocols are presented in [75]. 

Modern vehicles require high bandwidth and low latency, beyond the 

capabilities of CAN and FlexRay. Ethernet is expected to become the backbone 

of next‑generation architectures, supported by high‑performance gateways to 

centralize ECU data, while CAN, LIN, and FlexRay remain for specific 

applications [76]. Vehicles are evolving toward intelligent, Internet‑connected 

systems where cyclic signal‑based communication (LIN, CAN, FlexRay) 

coexists with service‑based, event‑driven IP networks. SOME/IP introduces 

service‑oriented transmission, reducing unnecessary traffic [77]. Currently, 
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the industry views SOME/IP, particularly VSOME/IP (Genivi’s implementation), 

as the next‑generation protocol for in‑car ECU communication [78,79]. In V2I 

contexts, the first objective is to design a gateway enabling conversion and 

wrapping between SOME/IP and OPC UA. The first step in this direction was 

presented in [K-30], using the classic client-server paradigm for OPC UA.  

The approach in [K‑21] outlines steps for implementing the OPC UA publish–

subscribe mechanism and testing it alongside the VSOME/IP notify–subscribe 

mechanism through a gateway. The study also provides insights into real‑time 

behavior and future perspectives. 

With microprocessors increasingly shaping vehicle architectures, supported by 

Adaptive AUTOSAR and POSIX‑based operating systems, new concepts and 

communication technologies can be analyzed in industrial contexts, 

highlighting concrete advantages and limitations. Beyond SOME/IP, DDS is 

also investigated as a key automotive protocol [80–81]. In [K‑15], another 

objective was achieved: offering insights into state‑of‑the‑art communication 

protocols aligned with automotive demands and exploring a gateway solution 

based on AUTOSAR‑compliant Ethernet technologies such as SOME/IP and 

DDS, together with the emerging middleware eCAL. 

 

2.3.1.1 Approaches regarding Some/IP and OPC UA    

The first approach from [K-30] targeted a Some/IP – OPC UA gateway. The 

research considered the classic OPC UA client/server based representation, 

and the VSOME/IP request-response mechanism.  

The gateway general architecture is presented in Fig.  2.3-1, and targeted a 

V2I communication as depicted in the case study scheme from Fig.  2.3-2. 

  
Fig.  2.3-1 General architecture of the VSOMEIP-OPC UA gateway. 

Two scenarios were tested. First, elementary messages were sent from the 

OPC UA server (e.g. “0xAA” message as in Fig.  2.3-3), and reaching from the 
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OPC UA client and VSOME/IP server to the VSOME/IP client. The VSOME/IP 

client sends back an acknowledgement message (e.g. “0xCC in Fig.  2.3-3).  

  
Fig.  2.3-2 Case study implemented architecture. 

  

Fig.  2.3-3 Screenshots associated to the informational 
flow for case study 1. 

A second case study targeted external OPC UA server access, to test the OPC 

UA client. The OPC UA server is part of a real industrial plant and linked to a 

WinCC Professional v13 SCADA system. Two tags, electrical energy values 

within the plant, were retrieved. The OPC UA client in the developed gateway 

reads these tag values directly from the server, as illustrated in Fig.  2.3-4, 

where three timestamped sets of values are received. To evaluate OPC UA 

interfacing efficiency, a widely used industrial OPC UA client (Softing) was 

employed for result comparison within a close time frame (see Fig.  2.3-5).      

  

Fig.  2.3-4 OPC UA client from the gateway accessing external OPC UA server (reading two tags). 
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Fig.  2.3-5 Softing OPC UA client accessing OPC UA server. 

The second step was to approach the OPC UA publish-subscribe mechanism 

according to the OPC Unified Architecture Part 14. The gateway concept was 

maintained in [K-21], and other features of the two protocols were analyzed. 

As a transport protocol, UDP is the chosen option for this case. Fig.  2.3-6 

illustrates the configuration sequence for all components in the OPC UA 

publish–subscribe pattern, including the steps preceding and following 

information transmission and reception. 

          

Fig.  2.3-6 OPC UA Publish-Subscribe configuration components. 

In applying communication protocols with the publish–subscribe mechanism, 

it was necessary to establish correlations between publishing and receiving 

times for both protocols, together with a dependency procedure among the 

gateway application components (see Fig.  2.3-7). The VSOME/IP notify-

subscribe pattern is an event‑driven mechanism enabling publisher–subscriber 

communication through service discovery. Data exchange occurs via 

communication endpoints, which define transport protocols and configuration 
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parameters such as port numbers, multicast addresses, and protocol details. 

These parameters are stored in a JSON‑based VSOME/IP configuration file. 

The notifying (publishing) process depends on the OPC UA subscribing 

process: no transmission to the target client occurs until data arrives from the 

OPC UA publisher. Once received, the VSOME/IP message is transmitted, and 

the execution sequence returns to the OPC UA subscribe process within a time 

shorter than the OPC UA publishing interval. 

 

Fig.  2.3-7 Gateway application components dependency, OPC UA and VSOME/IP in the Real-Time Publish-

Subscribe context. 

Although [K‑21] expands the gateway concept with several OPC UA 

developments, the current implementation focuses on VSOME/IP for intra‑car 

communication and OPC UA for infrastructure. The scenario addresses V2I 

interfacing (e.g. Fig.  2.3-8). The semaphore is modeled through an OPC UA 

server that stores vehicle‑relevant information. Three nodes hold the traffic 

light colors and semaphore coordinates, enabling distinction among multiple 

semaphores. The light color is updated by an OPC UA client running on the 

same machine, using Linux timers to trigger changes. Concept validation 

involves a third client that reads and displays server data. A detailed 

representation of the three devices is provided in Fig.  2.3-9. 

 

Fig.  2.3-8 Gateway case study general architecture. 
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Fig.  2.3-9 The three devices used in the case study architecture. 

Reading from the OPC UA server and transmitting to the VSOME/IP client are 

synchronized by a common timer, ensuring predictable cyclic behavior for the 

SOME/IP notify–subscribe mechanism. In certain scenarios, however, server 

reading may desynchronize from transmission. Data exchange was tested at 

recurrences ranging from 1 ms to 10 s using a cyclic gateway timer controlling 

both reading and forwarding processes. For all tested intervals, the VSOME/IP 

client received correct data, though transmission latency increased with larger 

data volumes transferred from the OPC UA server. 

 

2.3.1.2 Multi-Protocol Gateway in an Automotive V2X context    

Future interoperability challenges lie in interfacing diverse technologies and 

architectures, each with distinct hardware resources and requirements. In 

[K‑15], a combined automotive–IoT use case defined an architecture with 

mixed SOME/IP, DDS, and eCAL nodes communicating via a gateway. From a 

hardware perspective, automotive specific technologies guided the use of 

microprocessors with native POSIX operating systems for most nodes. 

Interaction with an IoT supervisor was simulated through a virtualized Linux 

OS on a general‑purpose computer. SOME/IP and DDS nodes represent 

intra‑car communication infrastructure aligned with AUTOSAR compliance, 

while the gateway ensures data exchange between them and supports 

interaction with the eCAL supervisor located separately. Each entity operates 

on a distinct device, with transmitted data structured as cyclic heartbeat 

events. The hardware architecture is illustrated in Fig.  2.3-10.  

In addition to developing SOME/IP, DDS, and eCAL publishers and subscribers, 

the gateway coordinates all participants to ensure efficient payload 

distribution, accounting for desynchronizations caused by network instability 

or operating system delays under real‑time constraints. Two gateway versions 

were defined, depending on the heartbeat event provider. Each version 
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integrates middleware‑specific subcomponents aligned with assigned roles, 

with every subcomponent transmitting and receiving data on separate 

threads. This multithreaded design improves observation of recurrent 

transmissions, delays, and connectivity issues. Data delivery remains efficient, 

maximizing application responsiveness. The system architecture for both 

versions is illustrated in Fig.  2.3-11. 

 

Fig.  2.3-10 Hardware architecture of the multi-protocol gateway. 

 

Fig.  2.3-11 System architecture showcasing both versions of the gateway. 

The concept and development of the case studies enable clear observation of 

procedure sequences within a SOA involving nodes of diverse technological 

origin. Their interactions are synthesized in the proposed approach and 

illustrated in Fig.  2.3-12. The concept’s reliability and efficiency were evaluated 

through a data buffering mechanism and a signal generator for the distributed 

heartbeat event. Both mechanisms provide clear insights into communication 

infrastructure behavior under real‑time constraints and highlight the network’s 

impact on message delivery at high recurrence rates. The developed buffering 

process is detailed architecturally in Fig.  2.3-13.  

Each node’s activity was tested individually, confirming high interoperability 

even in complex scenarios. The multithreaded design proved efficient and 

feasible across three publish–subscribe technologies, enabling automated 

cyclic data delivery. Reliability and efficiency are further demonstrated 
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through the success rate results of the data buffering mechanism, presented 

in Fig.  2.3-14.  

 

Fig.  2.3-12 Procedures Sequence for all nodes of the architecture. 

 

 

Fig.  2.3-13 Data buffering sequence. 

The multi‑protocol gateway successfully interfaced SOME/IP, DDS, and eCAL 

entities, meeting efficiency and reliability criteria while mapping the concept 

to a V2X communication scenario. The defined architecture supported 

interaction among three communication technologies across two case studies, 

each based on distinct gateway versions with specific characteristics. 

Compatibility among SOME/IP, DDS, and eCAL was confirmed, providing 
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perspectives across industrial domains and highlighting protocol‑specific 

advantages and limitations, as illustrated in Table 2-6. 

 

Fig.  2.3-14 Data buffering success rate results. 

 
Table 2-6 Advantages and disadvantages related to SOME/IP, DDS and eCAL 

Protocol Advantages Disadvantages 

SOME/IP • AUTOSAR compliant 

• Validated in multiple automotive use-cases 

• Supported on both Classic and Adaptive 

platforms 

• Reliable and efficient 

• Complex 

configuration 

process 

DDS • AUTOSAR compliant 

• Offers multiple mechanisms that assure 

flexibility and scalability 

• Supported on Adaptive platform 

• Validated in multiple IoT applications and use-

cases  

• Not established 

in the automotive 

domain, despite 

being AUTOSAR 

compliant 

eCAL • Efficient, intuitive and easy to use for Ethernet 

communication scenarios  

• Easy configuration process 

• High potential for industrial and automotive 

related use-cases 

• Not AUTOSAR 

compliant for now 

• Not very known 

• Not applied to full 

potential in explicit 

technical areas 

 

 

2.3.2 Zenoh Approach in the Automotive Sector 

Modern vehicles rely on distributed controllers that communicate in real time 

to ensure safety and efficiency. A key trend is the shift toward zonal 

architectures, where local controllers manage specific functions and report to 

an in‑vehicle server. This reduces cabling complexity and improves integration 
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of power and communication infrastructures, but also imposes stricter 

requirements on middleware and software platforms [82]. Increasing 

demands for real‑time monitoring and cloud connectivity further highlight the 

need for efficient communication protocols, whose selection directly impacts 

system performance under automotive real‑time constraints. Case‑study 

validation has therefore become essential for assessing middleware 

adaptability across diverse automotive scenarios. 

The transition to software‑defined vehicles has accelerated the adoption of 

modular, scalable, and connected embedded architectures [83]. Traditional 

ECUs are being replaced by zonal controllers that manage sensors and 

actuators for specific domains (e.g., body, chassis, powertrain) and report to 

centralized servers [84-85]. Modern vehicles may integrate up to 150 ECUs 

communicating via in‑vehicle networks [86]. In‑vehicle servers enable 

advanced features such as external communication, OTA updates, and 

enhanced safety [87]. Reliable protocols are crucial for V2I integration, 

particularly in edge/cloud contexts. For example, [88] proposes a V2X enabled 

system architecture for accident detection and real‑time data analysis. 

Building on this motivation, two publish/subscribe protocols, Zenoh and DDS, 

are compared for real‑time data delivery between in‑vehicle servers and the 

cloud. Zenoh unifies data in motion, data at rest, and computation under a 

single protocol, offering location transparency, geo‑distributed storage, and 

query‑based access [89]. Its support for peer‑to‑peer, brokered, and routed 

topologies provides flexibility for complex embedded deployments [90], while 

its lightweight design avoids reliance on broker‑based architectures [91]. 

Studies confirm Zenoh’s suitability in automotive simulations [92], live 

migration of edge applications [93], SDN coordination [94], autonomous 

vehicle dataflows [95], and IoT surveillance [96]. Comparative analyses show 

Zenoh achieving lower latency and higher throughput than DDS, MQTT, and 

Kafka, particularly in constrained networks [97-99]. 

DDS, however, remains a benchmark protocol in industrial and embedded 

systems. Its specification includes the Data‑Centric Publish‑Subscribe (DCPS) 

layer and the optional Data Local Reconstruction Layer (DLRL), with 22 

configurable QoS parameters enabling adaptability to diverse applications 

[100]. DDS generally outperforms alternatives such as MQTT, ZeroMQ, and 

AMQP in scenarios with large messages, strict real‑time requirements, or many 

subscribers [100]. 

The primary aim of [K‑2] was to assess whether emerging frameworks such 

as Zenoh can satisfy the stringent requirements of the automotive industry, 

particularly regarding cloud data transmission under varying time constraints. 
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A Zenoh‑based communication architecture was implemented and 

benchmarked against DDS in a representative scenario, serving as an initial 

step toward designing adaptable, high‑performance automotive middleware. 

The specific objectives of [K‑2] were to: 

- Employ distributed embedded equipment typical of automotive systems, 

including two zone controllers and an in‑vehicle server. 

- Implement a Zenoh‑based prototype within a service‑oriented system, 

a zonal control use case. 

- Collect real‑time control and execution data from zone controllers via 

the in‑vehicle server and forward it to the cloud using Zenoh and DDS 

for comparison. 

- Evaluate communication reliability at multiple publishing intervals 

(1000 ms, 100 ms, 10 ms, 5 ms, 1 ms) to test Zenoh under increasing 

speed and timing constraints. 

- Highlight Zenoh’s strengths over DDS in terms of data consistency, 

simplicity, and suitability for embedded automotive environments. 

- Derive practical insights on Zenoh’s configuration and adaptation for 

automotive‑grade communication, establishing a basis for future 

improvements and extended testing. 

 

2.3.2.1 Architectural Approach   

The study focuses on the in‑vehicle server–cloud connection, enabling 

real‑time data monitoring and analysis. Communication is implemented with 

Zenoh (primary focus) and DDS, both tested under identical conditions. The 

system comprises two microcontrollers (XMC4500, STM32L476RG) 

functioning as zone‑controller ECUs and a Raspberry Pi 4 serving as the 

in‑vehicle server (see the vehicle architecture in Fig.  2.3-15).  

From a hardware perspective, two potentiometers are connected to the 

XMC4500 zone controller: one adjusts direction (left/right), the other controls 

speed (high/low). This microcontroller serves as the decision‑making node, 

coordinating subsequent operations. The STM32L476RG zone controller acts 

as the execution node, driving two stepper motors that simulate physical 

responses to control signals; in real implementations, these could be replaced 

by actuators or other components. The in‑vehicle server processes data 

streams in real time, interfacing with the XMC4500 via two input channels and 

acquiring state information from the STM32L476RG through four channels. 

Beyond coordinating the controllers, the server enables V2X communication 

and cloud integration. External communication is handled through Zenoh and 

DDS, both publish/subscribe protocols with identical hardware. 
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Fig.  2.3-15 General architecture for the connection between the in-vehicle server and the cloud via ZENOH/DDS. 

By aggregating data from control and execution nodes, the server provides a 

real‑time system overview, forwarding information to the cloud for monitoring 

and analysis. Testing under generic, non‑ideal infrastructure reflects 

real‑world conditions, exposing potential limitations and edge‑case behaviors. 

Communication flow is evaluated by comparing messages sent by the server 

with those received by the cloud, revealing how performance degrades under 

high‑frequency transmission while maintaining stable operation. This 

assessment highlights the robustness and flexibility of the architecture under 

strict timing and imperfect conditions. 

 

2.3.2.2 Case-Study Development and Results 

The testing process involved transmitting a predefined number of messages 

from the Raspberry Pi to the cloud server at recurrence intervals of 1000 ms, 

100 ms, 10 ms, 5 ms, and 1 ms. For each interval, received messages were 

compared to those sent. Additional scenarios measured latency and jitter for 

both protocols at every interval. Two fault‑injection tests were also conducted 

to assess protocol resilience under degraded network conditions and to 

analyze their impact on message delivery rates. Table 2-7 summarizes the key 

implementation parameters of the system, including software versions, 

operating system details, socket buffer configurations, and QoS settings. 

Table 2-7 System configuration details 

Parameter 
Configuration 

Protocol 

version 

zenoh-c 1.0.0-dev-208-gaab2487 (for Zenoh) 

Fast-DDS 2.14.0 (Fast RTPS), Fast-CDR 2.2.1 (for DDS) 
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Operating 

System 

Raspbian GNU/Linux 12 (Bookworm)  

Ubuntu 20.04.6 LTS 

Kernel version 6.6.51+rpt-rpi-v8 (for Raspberry Pi) 

5.15.0-139-generic (for Linux VM) 

Socket buffer 

sizes 

rmem_max = 212992 

wmem_max = 212992 

QoS for DDS RELIABLE_RELIABILITY_QOS, TRANSIENT_LOCAL_DURABILITY_QOS (for 

Publisher), VOLATILE_DURABILITY_QOS (for Subscriber) 

Serialization Raw byte payload - for Zenoh, CDR (Common Data Representation) – for DDS 

Both DDS and Zenoh implementations were developed. This section outlines 

the Zenoh‑based approach. The communication layer was set to be Zenoh to 

evaluate real‑time data transmission from the in‑vehicle server (Raspberry Pi) 

to the cloud (Ubuntu VM), focusing on reliability and timing across varying 

publication intervals. Zenoh’s topic‑based publish/subscribe mechanism 

resembles DDS but differs in syntax and configuration. DDS defines topics via 

IDL files, while Zenoh employs lightweight key expressions (e.g. 

/key/topicForMonitoring) for dynamic data access. The data structure, an 

unsigned long timestamp and a string message, remains unchanged but is 

managed through Zenoh’s byte‑oriented APIs. Implementation relied on the 

open‑source zenoh‑c library [101], with design references from official 

documentation [102]. Fig.  2.3-16 shows topic‑level data flow and 

communication structure between MyPublisher1 and MySubscriber1. 

 
Fig.  2.3-16 Zenoh communication flow. 

Although DDS and Zenoh both employ the publish/subscribe model on 

identical hardware, their implementations differ markedly in configuration 

complexity, code structure, and resource management. In DDS, topic 

definition requires an IDL file describing data structures, compiled with tools 

such as Fast DDS‑Gen to generate Publisher and Subscriber code. This 

introduces dependencies, external tooling, and higher setup effort. DDS also 

demands careful configuration of participants, domain IDs, data types, 

DataWriters, and DataReaders. Zenoh, by contrast, offers a lightweight 

approach. Topics are replaced with flexible key expressions, and data is 
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handled as byte buffers, leaving encoding/decoding to the application. 

Functions such as z_put() and z_declare_subscriber() simplify publishing and 

subscribing through callbacks, avoiding rigid participant and type registration. 

Memory management is streamlined via owned and loaned data types 

(z_owned_bytes_t, z_loaned_sample_t), reducing allocation overhead 

compared to DDS’s typed system. 

Integration is also easier: Zenoh relies on the zenoh‑c library and a simple 

CMake setup, without IDL generation or multiple dependencies. Unlike DDS, 

it requires no domain IDs or static participant setups, making replication and 

modification straightforward. Both implementations used the same payload 

(message + timestamp), but serialization differed. DDS applied the CDR 

standard, ensuring type safety but adding overhead, while Zenoh transmitted 

raw byte arrays, improving efficiency at high publishing frequencies. Zenoh 

further simplified debugging and monitoring, with lightweight logic based on 

key expressions, particularly advantageous on resource‑constrained devices 

like the Raspberry Pi. While DDS remains robust for large‑scale, type‑safe 

systems, Zenoh’s lightweight design proved better suited for real‑time 

experimentation, prototyping, edge‑to‑cloud integration in this scenario. 

Performance evaluation involved testing both protocols under 5 recurrence 

intervals. Each 1‑minute test published thousands of messages, enabling 

detailed statistical analysis of reliability under varying load conditions. The 

results are summarized in Fig.  2.3-17 and Fig.  2.3-18. 

 
Fig.  2.3-17 Zenoh monitoring statistics. 

 
Fig.  2.3-18 DDS monitoring statistics. 

At 100 ms recurrence, Zenoh achieved a 99.22% success rate, slightly 

outperforming DDS at 98.24%. At 10 ms, the gap widened: Zenoh delivered 



71 
 

95.13%, while DDS reached 90.80%. These differences reflect the influence 

of operating system scheduling and buffering in non‑real‑time environments. 

At 5 ms, Zenoh maintained 91.79%, compared to DDS at 83.09%. At 1 ms, 

DDS dropped to 57.12%, whereas Zenoh sustained 79.93%. Although both 

protocols decline at high publishing rates, Zenoh’s resilience highlights its 

suitability for high‑throughput, low‑latency edge computing scenarios. 

A dedicated test scenario further measured end‑to‑end latency and jitter 

across all intervals. Timestamped data enabled calculation of latency 

(publication–reception difference) and jitter (variation from expected 

intervals). Results, detailed in [K‑2], showed Zenoh outperforming DDS. For 

example (see Fig.  2.3-20), at 10 ms recurrence, Zenoh achieved an average 

latency of 149.69 ms and jitter of 0.92 ms, indicating stable scheduling under 

high‑frequency transmissions. DDS, by contrast, recorded 163.23 ms latency 

and 1.74 ms jitter, with greater fluctuation and reduced consistency. 

 
Fig.  2.3-19 Zenoh-DDS comparison in fault-injection scenarios. 

To evaluate behavior under non‑ideal conditions, two fault‑injection scenarios 

were introduced: simulated packet loss and artificial network delay. These 

reflect common issues in wireless embedded or congested in‑vehicle networks, 

where strict timing can be disrupted. In the delay scenario, the subscriber 

(Linux VM) was configured with 200 ms ± 50 ms delay, while the publisher 

(Raspberry Pi) had 100 ms ± 20 ms delay. In the packet‑loss scenario, a 5% 

loss rate was applied at the publisher’s interface to emulate random 

transmission failures. Tests results are shown in Fig.  2.3-20. 
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In the artificial delay scenario, Zenoh maintained: 100% delivery at 1 s, 

91.51% at 100 ms, and 84.59% at 10 ms. At higher frequencies, rates 

declined to 80.84% (5 ms) and 52.75% (1 ms), yet Zenoh outperformed DDS. 

DDS remained acceptable at 1 s (100%) and 100 ms (92.64%), but dropped 

sharply to 47.73% at 10 ms, 32.39% at 5 ms, and 10.23% at 1 ms, indicating 

limited suitability under added latency for high‑frequency transmissions. In 

the packet‑loss scenario, Zenoh showed resilience, sustaining 100% at 1s, 

98.20% at 100 ms, and 92.63% at 10 ms. Performance decreased to 90.42% 

at 5 ms and 64.02% at 1 ms. DDS was more sensitive, with 95.18% at 

1000 ms and 93.33% at 100 ms, but falling to 78.04% at 10 ms, 67.53% at 

5 ms, and 32.97% at 1 ms. 

 
Fig.  2.3-20 Zenoh-DDS comparison in fault-injection scenarios. 
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3 Approaching New Technologies and Solutions in Supervisory Control 

and Data Acquisition 

The current chapter consists of information from 6 scientific works [K-8], [K-

10], [K-22], [K-34], [K-35] [K-39], all WoS indexed papers, within 3 

conference proceedings and 3 Q2 journals. The current chapter presents 3 

different industrial paths as follows: 

- The IGSS SCADA environment that is the only environment with object-

based licensing. The published papers approached two directions that 

were stringent in the corresponding period, namely the optimal resource 

allocation for IGSS [K-39], and very briefly the web access possibility 

[K-34]. 

- The mobile Android SCADA concept that is independent of a main SCADA 

environment, and that has OPC UA interfacing. Two papers were 

published regarding the Android SCADA conceived and developed 

solution. The first was based on OPC UA Client-Server mechanism and 

a basic diagram approach [K-35], and the second highly improved 

solution that was validated in the water industry and included modules 

as Alarm&Events OPC UA service, tag structuring, elaborated design and 

deployment services, etc. [K-10]. 

- The Node-RED based SCADA, relying on Node-RED open-source 

environment. The Node-RED SCADA research resulted in two published 

papers in Q2 journals, the first [K-21] as a generic solution, and the 

second [K-8] more complex application that was validated in a building 

management system real scenario.    

 

3.1 IGSS related Advancements in Efficiency. 

As the IGSS SCADA environment popularity was increasing due to the object-

based licensing, reporting module, early OPC interfacing, graphics and general 

structuring, many industries used it in implementations both as first level and 

as regional/central control centers. 

Work [K‑39] proposed an optimization of IGSS SCADA resources for 

integrating wastewater and drinking water pumping stations (WWPS/PS) into 

higher‑level SCADA systems. Local automation solutions vary widely due to 

differences in equipment, generations, tender specifications, and integrator 

practices, limiting the possibility of modifications. Thus, maximizing SCADA 

software capabilities is essential to reduce costs. In IGSS, licensing is 

object‑based, with types such as analog, digital, table, and counter, each 

defined by preconfigured atoms. Atoms differ by role (data type, I/O, alarm) 
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and may require templates for proper use. Traditionally, each IGSS object 

corresponds to a physical device (e.g., sensor, pump, mixer) and its main 

atom (e.g., ActualValue for analog, State for digital) represents the key 

operational parameter. Alarming and reporting strategies are built around 

these atoms, while additional atoms (e.g., HighAlarm, LowAlarm, AlarmIn) 

extend functionality. To fully exploit alarming in higher‑level SCADA, 

optimizations are needed since local PLCs and SCADA systems already 

generate alarms in diverse formats, requiring template structures to access 

more bits from available tags. 

FreeValue atoms, designed to map analog values, are underutilized in classical 

implementations, as they cannot trigger alarms directly or appear in standard 

reports. For example, a device with three alarm states (overheating, 

overcurrent, leakage) would require three IGSS objects, since FreeValue 

atoms are excluded from standard reporting. This approach consumes 

excessive resources, leading to larger license packages and higher costs when 

scaled to higher‑level SCADA.  

In the water sector, locally implemented automation solutions lack a unified 

classification methodology for integration. The provided tags are central to 

IGSS optimization, with three types identified in OPC DA/UA implementations: 

- Simple tags: single values linked to local variables (e.g., pump state, level). 

- Composed tags: sets of digital values represented by word variables, with 

bits encoding operational states or faults. 

- Multiplexed tags: values varying across sample times. 

Based on these structures, WWPSs were classified into four categories: 

- Type 1: simple and composed tags, including pump states/faults, 

emergency signals, intrusion detection, and gas monitoring. 

- Type 2: only simple tags. 

- Type 3: simple and multiplexed tags, mainly analog. 

- Type 4: simple and condensed composed tags, with pumps controlled via 

frequency converters and detailed fault detection. 

Similarly, PSs were grouped into three categories: 

- Type 1: simple and composed tags, covering pump and valve states/faults. 

- Type 2: simple and multiplexed tags. 

- Type 3: only simple tags. 

IGSS enables optimized implementations that reduce object requirements and 

implicitly licensing costs. Resource optimization involves defining objects, 

mapping atoms, configuring alarms, and reporting systems. These strategies 
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were aligned with operational needs of a water distribution company, ensuring 

operators had access to relevant tags and SCADA functionalities available. 

Extracting information from composed tags requires additional processing in 

SCADA. Two approaches were proposed: 

- Templates with Calculation Module: Template structures are configured 

for Bit Map I/O (to expand states), Alarm In/Ack bits (to extend alarms), and 

State/Commands (to define states). Alarms can be mapped to the State atom 

of digital objects, with single‑bit display options and individual descriptors for 

each state. The calculation module applies masks to identify or group bits, 

mainly for alarm/state delimitation. This method was used for WWPS type 4, 

where large digital data was in composed tags as pump/valve states/faults. 

- VBA Implementations: VBA code identifies individual bits of composed 

tags and assigns graphical descriptors in synoptic schemes. This generic 

approach is effective across IGSS due to its modular design. Multiplexed tags 

are better suited to VBA, as their values change per sampling period. 

FreeValue atoms can be repurposed for counters, linked to alarms through 

scripting, enabling alarms to be triggered. Alarm texts are created and 

associated with objects, while conditions are managed via code. Visual 

descriptors ensure diagram visualization, and alarm management interfaces 

allow acknowledgment and clearing directly in SCADA diagrams. 

For reporting, standard IGSS reports focus on base class values and lack 

coverage for all atoms. Optimization requires archiving and reporting of every 

atom. IGSS supports extended logging with MySQL or SQLite, solving storage 

and access issues. Custom Excel‑based reports provide the only way to 

represent diverse atom types, executed similarly to standard reports. The 

mapping was designed to maximize resource utilization for each WWPS and 

PS type. IGSS objects were defined with a high number of atoms, ensuring 

proper correspondence across all IGSS modules. An illustrative example of 

object mapping is provided in Fig. 3.1-1 for a type 2 PS. 

After IGSS resource optimization, WWPS integration required an average of 7 

objects per station, while PS integration used 11–13 objects. The optimization 

magnitude varied by station type: classical SCADA implementations for WWPS 

types 1–3 typically required 22–26 objects, and type 4 up to 49. For PSs, 

classical solutions averaged 40 objects for type 1 and 51 for types 2–3.  

All monitoring and control diagrams operated correctly, with examples shown 

in Fig. 3.1-2 (type 1 WWPS) and 3.1-3 (type 2 PS). Core SCADA functions, 

including alarming, reporting, logging, archiving, and mobile access, were also 

verified as fully functional. Resource optimization was not fully maximized. 

Objects were grouped with attention to alarm indications in diagrams, 
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integrated graphics, predefined measurement unit associations, and mobile 

module functionality. 

  
Fig.  3.1-1 PS type 2 object mapping example. 

 
Fig.  3.1-2 WWPS type 1 IGSS diagram example using optimized resources (augmented in English). 

IGSS provided limited web‑based solutions for remote monitoring, including 

TeamViewer, LogMeIn, and an ActiveX browser client within the classical 

client‑server setup. These approaches transferred the full graphical output of 

the IGSS server, requiring high‑bandwidth networks. A dedicated web 

monitoring/control module was not prioritized, though development was 

possible via the ODBC server. Paper [K‑34] introduced WebNavIGSS, a 

generalized web‑based solution that leveraged existing SCADA structures in 
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correlation with the Supervise module. Built around a webserver, 

WebNavIGSS enabled real‑time data output from IGSS applications. 

 
Fig.  3.1-3 PS type 2 IGSS diagram example using optimized resources (augmented with explanations in English). 

The concept relied on the IGSS ODBC server, enabling SQL‑based access to 

configuration and process data. Through this interface, key tables as ALM 

(alarms), LOG (logs), and BCL (base class) were accessed. An SQL/MySQL 

server acted as a bridge, importing non‑standard databases via ODBC and 

converting them into standard formats usable by higher‑level applications. The 

web application, controlled by the webserver, processed data from the 

SQL/MySQL server and delivered real‑time outputs in a user‑friendly interface. 

Data transfer between the SQL server and webserver employed PHP with 

JavaScript, chosen over Java or C# for its speed, lower resource demands, 

scalability, open‑source nature, and platform independence in dynamic web 

development. The main software components of WebNavIGSS and the 

proposed concept are shown in Fig. 3.1-4. 

For monitoring, the webserver retrieved live data from IGSS databases—

audittraildb (audit), logdb (logs), mntdb (maintenance), and hdmdb 

(historical). Modifying atom values via WebNavIGSS required bidirectional 

communication between the webserver, SQL server, and IGSS ODBC server. 

A Model‑View‑Controller (MVC) architecture was adopted, enabling modular 

separation of application areas and independent implementation, which 

proved advantageous in the IGSS context. The WebNavIGSS application is 

structured into modules, as shown in Fig. 3.1-5, each with defined tasks and 

interconnections to limit redesign or replacement impact. 
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Fig.  3.1-4 Main software components of the proposed concept. 

The Core Application (CoreApp) module functions as the operating system of 

the application, coordinating and integrating all modules. It employs 

priority‑based task management to ensure user‑critical actions (e.g., 

responding to queries) are processed before secondary tasks such as database 

imports. CoreApp also includes initialization sequences for all modules, error 

handling to diagnose faults and determine corrective paths, and exit routines 

to preserve data integrity during shutdown. The finite state machine governing 

CoreApp operation is shown in Fig. 3.1-6. Table 3-1 details the events, 

conditions and actions associated to an id number within the state machine. 

The RealTimeHandler manages user communication and synchronizes values 

with IGSS SCADA using both asynchronous and synchronous tasks. Browser 

data updates occur every 100 ms, a rate imperceptible to human eye.  

 
Fig.  3.1-5 WebNavIGSS application modules. 
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Fig.  3.1-6 Core Application module FSM. 

Table 3-1 CoreApp FSM details 

Id Events (E) Conditions (C) Actions (A) 

0 CoreApp not connected 
Connection with other modules 
established? No. 

CoreApp remains in same state 

1 
CoreApp initialized with other 
modules 

All modules initialized? Yes. CoreApp moves to Run state 

2 
CoreApp periodically checks 
application status 

An error occurred? No. CoreApp remains in same state 

3 
CoreApp received a request to 
exit the browser 

A request was received to close the 
session? Yes. 

CoreApp moves to Exit state 

4 
An error occurs while CoreApp 
is in run mode 

An error was reported? Yes. CoreApp moves to Error state 

5 
CoreApp is in error state and 
diagnosis is initiated. 

Error diagnosis ready? No. CoreApp remains in same state 

6 
CoreApp could not solve the 
problem. 

CoreApp can solve the problem? No. CoreApp moves to Exit state 

7 
CoreApp can solve the problem 
by reinitializing the module. 

CoreApp can solve the problem? Yes. 
CoreApp moves to Init state to 
initialize all modules 

The IGSSDataHandler manages data exchange with IGSS, storing information 

in SQL/MySQL servers, handling databases, and executing queries. A 

ServerConnection ensures a unique, active SQL session, directing the 

DatabaseConnection module. Databases contain tables processed through 

implemented SQL and query scripts, including customized user views. 

In the WebNavIGSS GUI, IGSS symbols, graphical descriptors of defined 

objects and their states, are imported via the SymbolHandler module. User 

management structures are also implemented through IGSSDataHandler, 

linking SCADA credentials with the web application. 

A small auditing historian was implemented to record user activity within 

WebNavIGSS. In case of connection errors, the IGSSDataHandler attempts 

reconnection for 5 min. at 100 ms intervals. If unsuccessful, it halts the 

procedure and reports an error to CoreApp. The UserInterface module 

translates actions into graphical structures accessible via the webserver, using 
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HTML and CSS. To ensure synchronization with CoreApp, communications are 

uniquely delimited, isolating the module from faults in others. The 

MonitorHandler establishes software connections for monitoring, similar to 

IGSS’s Supervise module but with simplified data views. Users can filter 

information by area, diagram, object name, alarm status, or atom conditions, 

with search functions available. The ControlHandler manages control 

functionality, enabling modification of atom values within objects. 

WebNavIGSS was validated both in laboratory conditions and in a real 

deployment at a regional IGSS SCADA control center of a water distribution 

company. The IGSS application encompassed water and wastewater facilities. 

Two screenshots illustrate the web navigator in operation, supplemented with 

English annotations. Fig. 3.1-7 illustrates active IGSS alarms in WebNavIGSS, 

highlighting two WWPS where levels exceeded the high limit. Fig. 3.1-8 

presents a filtered view from WWTP objects, two nitrogen output values, one 

oxygen value from the biological reactor, and the output flow. 

 
Fig.  3.1-7 WebNavIGSS screenshot of some active alarms. 

 
Fig.  3.1-8 WebNavIGSS screenshot of some live values. 

 

3.2 Android and OPC UA based Mobile SCADA Solution. 

Accessing SCADA applications from mobile devices became a necessity in 

several industries. Most of the mobile solutions are based on traditional SCADA 

environments extensions, needing SCADA server applications in a control 

room.  Independent SCADA solution was necessary, that is able to make use 

of Industry 4.0 improvements in interfacing and to be based on OPC UA 

protocol. First, in [K-35], a basic Android SCADA was conceived and developed 

solution, based on OPC UA Client-Server mechanism. The application was 

validated through a case study at a water treatment facility comprising a 

treatment plant, distant wells, pumping stations, reservoirs, and a water 

tower. Local automation/SCADA involved two separate solutions from different 

manufacturers under distinct contracts, with OPC serving as the interface. The 
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treatment plant control room operated on two redundant SCADA servers using 

WinCC 7.2 with Connectivity packs exposing OPC UA servers. 

The study focused on facility operation and maintenance, while the second 

contractor’s performance was observed during implementation of wells and 

distribution. An Android UA client could have reduced implementation time 

and costs by addressing inefficiencies such as personnel confinement to 

monitoring sites, delays from failed tests, limited process visibility, and 

restricted SCADA control room access. Additionally, the treatment plant 

contractor incurred significant effort traveling between the control room and 

equipment during testing. 

The following figures display the initial Android SCADA version tested in the 

case study. Fig. 3.2-1 depicts the OPC UA connection and a folder browsing. 

Fig. 3.2-2 presents a tag browsing and selection, respectively a subscription 

generation. In the subscription module, operators view basic variable 

information, including the UA server node identifier (ns, s) and tag value. As 

shown in Fig. 3.2-3, variables can be selected and customized via a popup 

window, allowing assignment of a title (e.g., output flow, well level, pump 

state, pressure, current, valve opening, with units) and an image for easier 

device identification. An updatable picture list was introduced for common 

equipment in the water facility. The subscription interface displays variables 

in full setup. For example, a WTP flow with a value of 34.53111 m³/h. 

Several protection structures were implemented to guide operators when 

incorrect commands are issued (e.g., invalid subscriptions) and to maintain 

continuous system status awareness. The objective was to create a 

user‑friendly application requiring minimal operator expertise.  

  

Fig.  3.2-1 Connecting to the OPC UA Server and folder browsing. 

Following the initial small‑scale application, research advanced toward a more 

complex prototype system for the water industry, as reported in [K‑10]. 

Starting the application initiates a new Linux process with a Main thread 
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responsible for all user interface (UI) interactions. In the first version, this 

thread also managed OPC UA server connections. However, newer SDKs 

prohibit networking on the main thread, generating a 

NetworkOnMainThreadException. The updated application therefore 

integrated multiple Background threads to handle network operations, 

including OPC UA server connections, Node ID subscriptions, and client 

disconnections, as illustrated in Fig. 3.2-4. 

 

 

Fig.  3.2-2 Variable browsing and initiating a subscription. 

 
 

Fig.  3.2-3 Variable browsing and initiating a subscription. 

The general architecture of the application is shown in Fig. 3.2-5, comprising 

two Android Activities: Connect Activity and After Connect Activity. In the 

connection module, users can initiate new OPC UA sessions, discover server 

endpoints via URI, or reconnect to existing sessions. All operations run 

asynchronously, separate from the main UI thread. The Discover Endpoints 

feature provides a list of EndpointDescription objects containing connection 

details such as URL, security mode, policy, and certificate. Selecting an 

endpoint creates a new client, and successful connections are stored with the 

session name in SharedPreferences. On reconnection, the stored 

EndpointDescription is retrieved, and all diagrams, objects, and subscriptions 

are automatically rebuilt for the client. 
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Fig.  3.2-4 Main processes of the application. 

 
Fig.  3.2-5 General architecture of the application 

Later, the MQTT protocol was also added to the application, as alternative to 

OPC UA. Fig. 3.2-6 depicts the choice to be taken at the initial connection. 

Three object types were defined in the application: digital, analog, and alarm. 

Digital and analog objects serve as structured items for storing and 
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representing data, and can be used to populate diagrams. Each may be 

enhanced with representative images, titles, and a NodeId linking the object 

to an OPC UA server variable. The custom object types with distinct 

characteristics are illustrated in Fig. 3.2-7. 

 
Fig.  3.2-6 Choosing the communication protocol OPC UA - MQTT 

 
Fig.  3.2-7 Software architecture of creating a Digital or Analog Object and Alarms. 
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Reliable OPC UA client–server communication was ensured through a 

reconnection strategy, improved error handling, and optimized disconnection 

processes. A listener monitors server status, triggering automatic 

reconnection when issues occur. Disconnection is managed both manually via 

the UI and automatically when the application closes, preventing crashes and 

time‑outs caused by limited concurrent server connections. Upon successful 

connection, the second activity serves as the application hub, containing a 

menu with Server Status, Browse, Subscribed Objects, Design and Deploy, 

and Disconnect Fragments. Navigation between fragments is handled by a 

dedicated component. The Design and Deploy Fragment is central: in Design 

mode, users can create, configure, and edit digital/analog objects and alarms 

through three dialogs (object creation, NodeId selection, alarm setup). In 

Deploy mode, a Foreground Service subscribes asynchronously to all NodeIds, 

ensuring data updates and alarm notifications remain visible even when the 

app is minimized. Data persistence uses SharedPreferences for sessions and 

simple objects, with Gson converting complex objects to JSON strings for 

storage and retrieval. Alarm objects, linked to NodeIds, support the Alarms 

and Events (A&E) service. Conditions trigger alarms, changing object color to 

red and logging events with time and date. With servers supporting the Alarm 

and Condition (A&C) service, alarms are transmitted separately from data 

access, enabling acknowledgment across the system and consistent 

messaging for all participants. 

Both monitoring and control are implemented. Control tasks use asynchronous 

operations: each ImageView registers context menus, showing edit options in 

Design mode and control options in Deploy mode (see Fig. 3.2-8). Three 

control cases were developed: 

- Digital object with numerical ON value: digitalObject.isValueOn() verifies 

configuration, and digitalObject.getOnValue() retrieves the ON state. The 

OPC UA Node data type is checked to avoid Bad_TypeMismatch. 

- Digital object with bitwise ON state: digitalObject.isBitwiseON() confirms 

configuration, and digitalObject.getOnBit() retrieves the bit position. Both 

ON and OFF values can be assigned to a bit. 

- Analog object: a dialog prompts the user to enter a new value in an EditText 

field. The linked Node data type is validated, and the value is written using 

client.writeAttribute for the NodeId. 

Adding a new object to the layout involves three dialogs. The first, opened via 

the + button, is the Configure Object dialog where object attributes are 

defined. The primary attribute is the type (Analog or Digital). Analog objects 

require images for Symbol and Alarm states, while digital objects require 

images for ON, OFF, and Alarm states. For testing, an analog object named 
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“P2_Putere”, representing a pump power meter, was created with Symbol and 

Alarm images as shown in Fig. 3.2-9. 

 
Fig.  3.2-8 Control menu displayed in Deploy mode 

The second dialog links the object to its corresponding NodeId from the OPC 

UA Address Space. Node selection is performed through a browsing dialog, 

where the operator taps and holds the desired node, as shown in Fig. 3.2-10. 

 
Fig.  3.2-9 Configuring a new analog object named 

“P2_Putere” 

 
Fig.  3.2-10 Selecting the NodeId for the analog object 

The final step involves adding an alarm. In the previous example, an Alarm 

object was created using the same NodeId as the analog object, with a unique 

name, message, mode, and setpoint. (Fig. 3.2-11). Alarm modes include: 

equal, not equal, above setpoint, below setpoint, between setpoints, outside 

setpoints, ON value, or bit state. Depending on the mode, one or two setpoints 

are required. In the example, the mode is above setpoint; thus, if the server 

value exceeds the setpoint “3,” an alarm is triggered.  

Switching to Deploy mode triggers the Foreground Service. An icon appears 

in the device status bar, and a notification is shown in the drawer (Fig. 3.2-

12), initiating monitoring. The alarm is appearing as notification (see Fig. 3.2-

13), respectively marked on the object within the view (Fig. 3.2-14). 
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Fig.  3.2-11 Adding an alarm to the analog object 

 
Fig.  3.2-12 Notification when the server 

starts running 

 
Fig.  3.2-13 Alarm notification for object “P2_Putere” when value 

is over set-point 3 

 

During Deploy mode, triggered alarms are displayed in an alarm list. 

Activating the Alarm List button opens a DialogFragment with a scrollable 

TableLayout. Each alarm is represented by a new row containing its title, 

NodeId, message, value, trigger time, and a red alarm image for 

acknowledgement, as shown in Fig. 3.2-15. The user can acknowledge an 

alarm by tapping on it and confirming the action. This action changes the 

acknowledge alarm image color. The list is limited to 50 alarms that are 

chronologically kept within the list to avoid saving unnecessary data which can 

diminish performance.  

For detailed time‑based monitoring, trend graphs were implemented using 

SurfaceView and Canvas. Users can select multiple NodeIds for simultaneous 

monitoring, and graphs can be scaled within defined limits. As an example, 

the evolution of pump speed (rotations/min) is graphically illustrated in 

Fig.3.2-16 using a trend graph. 
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 Fig.  3.2-14 Value above set-point 
3, showing an alarm within the 

diagram. 

 
Fig.  3.2-15 A list of alarms triggered for analog object “P2_Putere”.. 

 

 
Fig.  3.2-16 Tendency graph for a node with values from 2700 to 2800. 

 

3.3 Approaching Node-RED SCADA while Acknowledging Industry 5.0 Requirements. 

The industry is initiating more-and-more transition towards solutions that are 

assuring as much as possible the three Industry 5.0 pillars. In this sense the 
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essence is to be able to adapt and to be extended rapidly and efficiently to 

any requirement of the operator, to assure proper and quick maintenance, to 

shorten and fasten supply lines. One direction would require to initiate more 

basic level development within open-source environments. However, IIoT and 

digital transformation focus, popularity and new technologies would be 

essential. Therefore, another SCADA approach that was undertaken is 

referring open-source environment based SCADA. The Node-RED environment 

was in the center of this approach, as being more and more present in 

industrial environments and satisfying all criteria needed to successfully 

deploy and maintain a new type of SCADA system. 

The steps towards researching and developing a Node-RED based SCADA were 

to initially obtain a generic solution that cover basic SCADA modules and then 

to refine, improve, and grow the solution for industrial applicability. Therefore, 

the current section exposes parts of studies from [K-22] and [K-8] 

OPC UA represents a modern application-layer protocol designed to support 

increasingly demanding requirements for high-volume and high-speed 

industrial data exchange. In order to complement its capabilities, additional 

transport-level protocols are being adopted, such as UDP and more recent 

solutions within the OSI model, including Message Queuing Telemetry 

Transport (MQTT). Both MQTT and AMQP provide efficient mechanisms for 

cloud integration, relying on a robust publish–subscribe paradigm that is well-

suited for handling large-scale data streams. Current research highlights 

MQTT as a central focus of academic inquiry, while industrial practice has also 

embraced it, with implementations appearing in PLCs. SCADA systems are 

gradually adopting MQTT as well. For instance, Ignition, one of the most 

competitive SCADA platforms, offers MQTT functionality through third-party 

modules, with Sparkplug serving as the associated application protocol. 

Despite its potential, Sparkplug has yet to achieve widespread adoption, 

particularly within European markets. 

Traditional SCADA systems, however, continue to evolve at a slower pace. 

Their high cost and the necessity of maintaining backward compatibility with 

earlier versions pose significant challenges. Moreover, many SCADA 

environments historically relied on domain-specific legacy protocols, such as 

IEC 60870-5-104 in the electrical sector. Initially, the primary challenge for 

SCADA was the integration of heterogeneous data sources, especially 

interfacing with lower-level devices like PLCs. This led to the development of 

numerous proprietary drivers, which often distinguished one SCADA solution 

from another. With the emergence of centralized OPC and later OPC UA 

servers, SCADA platforms gradually transitioned to these standards. The 

introduction of OPC clients further accelerated adoption, enabling 
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interoperability across higher system layers. Some environments, such as 

Citect, were designed natively around OPC, while others like Ignition, which 

emphasizes customization and software-centric development, support 

OPC/OPC UA alongside legacy protocols including Modbus TCP, S7, and 

Ethernet/IP. Nevertheless, only a limited number of SCADA systems currently 

integrate MQTT as a native communication option. 

Beyond communication, SCADA platforms encompass a wide range of 

functionalities, including data visualization, graphical interface development, 

logging, archiving, alarm management, reporting, and mobile access. 

Conventional SCADA systems typically represent data through tag-based or 

graphical models. To reduce development and maintenance costs, alternative 

paradigms have been introduced. For example, the IGSS employs an object-

oriented methodology, wherein physical assets are represented by digital 

objects composed of atomic elements linked to PLC tags. Even licensing in 

IGSS is object-based. Other object-oriented approaches define core entities 

with attributes and methods, deferring graphical representation to later 

stages, thereby enhancing development efficiency. 

Data storage and archiving are increasingly supported by SQL-based 

databases, with platforms such as WinCC, Ignition, and Indusoft adopting this 

model. IGSS has also transitioned to SQLite as its default database engine. 

Mobile capabilities are another area of expansion, ranging from basic remote 

desktop modules to dedicated mobile applications (e.g. IGSS) and advanced 

frameworks such as Ignition Perspective, which enable custom mobile 

solutions. Modern SCADA development emphasizes rapid, concurrent 

deployment, often leveraging web technologies to deliver flexible and scalable 

solutions, as seen in Indusoft and Ignition. 

The [K-22] study introduced a cost-effective, modular, platform-independent 

SCADA architecture built upon the Node-RED IoT framework. The proposed 

system establishes an IoT network that facilitates seamless communication 

between physical and digital components while implementing essential SCADA 

functionalities for process monitoring. The solution integrates Modbus TCP and 

MQTT protocols, employs InfluxDB for time-series data management, and 

utilizes Grafana to enhance visualization and database interaction. 

Experimental validation demonstrates the effectiveness of this approach, 

confirming its suitability for efficient and customizable process supervision.  

Node-RED incorporates a wide range of communication protocols spanning 

multiple layers of the OSI model. Among these, the OPC UA has long been 

established, continuously evolving to expand its interoperability and functional 

scope. Within this framework, OPC UA clients enable direct connectivity to 
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field devices for data acquisition, while OPC UA servers facilitate integration 

at higher system levels or enable peer-to-peer communication by exposing 

structured datasets. Sparkplug B has been introduced into Node-RED, 

providing standardized connectivity between Sparkplug-enabled devices 

through the MQTT transport protocol. MQTT itself has emerged as a universal 

messaging protocol, valued for its simplicity, lightweight implementation, and 

minimal resource requirements. Node-RED natively supports MQTT through 

dedicated nodes, enabling integration with brokers such as Mosquitto. In 

parallel, AMQP nodes are also available, complementing MQTT in providing 

reliable cloud-oriented communication. 

Beyond these, Node-RED offers connectivity to major cloud ecosystems, 

including Microsoft Azure and Amazon Web Services (AWS). Furthermore, 

Node-RED has developed its own hosted cloud platform, Front End Node-RED 

(FRED), which provides a managed environment for deploying IoT solutions. 

The adoption of cloud services in IoT architectures is critical for centralized 

data management, ensuring secure, efficient, rapid delivery of information. 

In IoT platforms, historical data archiving is essential for analytics, requiring 

robust storage methodologies within system infrastructures. Selecting an 

appropriate database is critical, with factors such as scalability, portability, 

efficiency in writing and accessing data, compression, security, and 

implementation costs playing decisive roles. Node-RED supports integration 

with multiple databases, including MSSQL, MySQL, SQLite, PostgreSQL, and 

Oracle, as well as modern time-series solutions like InfluxDB. While relational 

SQL databases transformation remain viable, time-series systems provide 

performance for rapid logging and retrieval of continuously generated data. 

Due to its modular and customizable design, Node-RED enables SCADA-

specific functions such as logging, archiving, and reporting, even at the 

integrator level. Visualization tools like Grafana further enhance database 

manipulation and graphical representation, supporting the creation of 

dashboards that emulate SCADA monitoring. Compared to traditional SCADA 

systems, Node-RED offers broader connectivity, flexible scripting, and 

advanced data analysis capabilities, yielding a favorable cost–benefit balance. 

Its flow-based architecture, exportable as JSON files, ensures high 

technological readiness and facilitates straightforward identification of tags, 

objects, and data streams. Consequently, Node-RED demonstrates significant 

potential for IoT/IIoT applications and is increasingly positioned as a 

competitive environment for next-generation SCADA solutions.  

The architecture of the case-study SCADA system implemented in Node-RED 

is illustrated in Fig. 3.3-1. The communication protocol selected for PLC 

communication was Modbus TCP, though other protocols could be applied. In 
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this configuration, data generated by a simulated PLC is acquired and 

processed within Node-RED, which inserts the resulting time-series values into 

the designated database. Grafana subsequently performs scheduled queries 

on this data source, enabling visualization of key metrics. The resulting 

dashboard panels are integrated into the Node-RED interface, providing a 

unified monitoring environment. An MQTT broker manages message 

distribution, ensuring that all published data are delivered to subscribed 

clients. Finally, two client applications were employed to validate 

communication across the network. 

 
Fig.  3.3-1 The architecture of the proposed case study. 

To ensure proper data storage within measurements, a dictionary must be 

defined using JavaScript. Specific values can then be accessed or published to 

designated topics by declaring global variables through the global.set() 

function, while retrieval is enabled via global.get(), callable from any flow or 

sub-flow node. Following data processing, the formatted information is 

inserted into the InfluxDB time-series database (see Fig. 3.3-2). 

The second stage in completing the main SCADA component involves 

embedding Grafana panels into a unified Node-RED dashboard (see Fig. 3.3-

3). This integration is achieved through the layout tab’s grouping system, 

where each panel is assigned a tab and positioned at the desired interface 

location. Embedding is performed via a function node, whose payload specifies 

the Grafana related characteristics. This configuration ensures seamless 

visualization within a single monitoring environment.  
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The sub-flows are integrated into the main application flow, which defines the 

overall system logic. The dashboard elements, comprising a slider node, two 

switch nodes, and a non-editable text node, were configured and grouped 

within the interface to link graphical components with the underlying logic. To 

enhance monitoring, an SVG node was employed, enabling animated 

visualization of motor states through customized properties. Message 

payloads were structured in a function node to update selectors with specific 

attributes, such as the fill property, ensuring accurate graphical 

representation. User inputs are processed by function nodes, which publish 

results to an MQTT topic. Finally, the processed messages are directed to a 

“Modbus-Write” node, allowing modification of values at designated holding 

register addresses, thereby completing the control of the system. 

 
Fig.  3.3-2 Sub-flow for reading, processing and inserting data into the database. 

 
Fig.  3.3-3 Sub-flow for importing Grafana panels. 

The solution was tested and validated using various scenarios, using standard 

computer and mobile device as a SCADA running entity. A screenshot 

depicting dashboard status as a result from a tested scenario is presented in 

Fig. 3.3-4. As observed, all SCADA related modules are functioning properly.  

Following [K-22], the Node-RED SCADA solution was extended and applied in 

a real industrial scenario, within the building management system of an 

automotive company. Research contracts were improving the solution and the 

final application is running for several years now in the industrial environment.   
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Fig.  3.3-4 One status of the SCADA dashboard in a tested scenario. 

Work [K-8] presents some main outcomes of the research activity, the Node-

RED SCADA solution being a main contributor. The application was tested for 

correct data acquisition, data representation, complete alarming and notifying 

module, reporting module, and running on premise and on the cloud. Figures 

3.3-5, 3.3-6, 3.3-7 are presenting screenshots regarding the functioning of 

some modules.  

 
Fig.  3.3-5 Grafana stat view for event-based sensor data. 

  
Fig.  3.3-6 Grafana stat view for Datalogger acquired data. 

The research resulted in a fully operational solution capable of integrating 

diverse legacy systems commonly used in industry. Visual outputs confirmed 

both the accuracy of acquired data and the effectiveness of the acquisition 

process. Statistical dashboards were configured to display final values stored 
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in the designated database tables. Upon successful insertion, the data are 

retrieved from the database and presented on the dashboard through the 

appropriate graphical components, ensuring reliable monitoring and validation 

of system performance. Fig. 3.3-8 presents some example of processing logic 

usage of CPU and Memory. 

 
Fig.  3.3-7 Grafana trend chart. 

 
Fig.  3.3-8 Example of Processing logic usage of CPU and Memory. 
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4 Increasing Efficiency in an IIoT Guided Industrial Evolution 

The current chapter consists of information from 11 scientific works [K-7], [K-

12], [K-14], [K-17], [K-20], [K-23], [K-24], [K-28], [K-32], [K-33], [K-36]. 

The goal was to increase efficiency in the industry, following IIoT and Industry 

4.0 principles. The research works had in mind Industry 4.0 targets, but some 

influenced positively future Industry 5.0 pillars through various results and 

conceptual approaches (e.g. decentralized and local processing, energy 

consumption reduction, wastewater overflow prevention, non-invasive control 

augmentation to improve and extend the lifetime of systems, defect and 

quality indicator forecasting, human-centric applications both in water and 

automotive scenarios). The industrial domains of application are: the water 

sector and the automotive manufacturing.     

Industrial sectors differ in their capacity for reconfiguration. While industries 

such as automotive manufacturing frequently adapt production lines to client 

demands, the water sector remains resistant to invasive changes, relying 

heavily on legacy systems. This results in heterogeneous, chronologically 

dispersed solutions that require efficiency improvements through non‑invasive 

and sustainable strategies. Consequently, water treatment and distribution 

facilities face persistent challenges including high energy use, equipment 

failures, excessive chemical consumption, maintenance demands, and 

variable source quality [103]. Many technical implementations, once viable, 

are now outdated, requiring renewed academic and industrial efforts to unlock 

the sector’s potential for human health and environmental protection [104]. 

Under Industry 4.0, competition has focused on system connectivity and 

interoperability [105], as well as safeguarding critical infrastructure through 

automation, SCADA, and communication technologies [106]. However, 

research must be industry‑oriented, as many studies remain theoretical 

without practical applicability. Industry 4.0 connectivity has introduced the 

concept of data accumulation, typically implemented via historian applications 

[107]. Current approaches emphasize traditional storage and reporting rather 

than process orientation. For example, [108] adapts historian solutions for the 

electrical domain, extending support for IEC 61850. In the water sector, 

decentralized historian solutions are needed [109]. Despite large volumes of 

collected data, much remains unused, highlighting the need for proactive 

historian applications, advanced analytics, and optimization strategies. 

Autonomous optimization loops require model‑based analysis, decision 

procedures, and non‑invasive control. Studies such as [113] demonstrate the 

potential of data‑driven analysis of latent alarms and events in IIoT contexts. 
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Emerging edge/fog computing concepts further support Industry 4.0 by 

enabling local automation. Research in [114] evaluates middleware platforms 

for IoT solutions in fog and cloud configurations, applied to irrigation 

scenarios. Fog computing is also proposed in [115, 116] and extended to 

hybrid wind farm control [117]. Conversely, cloud computing remains 

advantageous for large‑scale distributed processes requiring less granular 

optimization, such as supply chain integration [118]. 

As drinking water facilities increasingly adopt Industry 4.0, the integration of 

physical and digital systems introduces challenges such as high energy 

consumption, maintenance demands, source quality variations [119], pump 

failures [120], and excessive chemical use [121]. Studies address these issues 

from multiple perspectives. For example, [122] analyzes energy requirements 

and carbon footprint in desalination for swimming pools, though without 

optimization steps. Improvements are proposed in [123] through real‑time 

SCADA monitoring to reduce water loss, while [124] develops a non‑linear 

multi‑year model for sustainable groundwater distribution in irrigation. Water 

demand calibration impacts are studied in [125]. Optimization of turbidity 

treatment using natural coagulants is presented in [126], and water quality 

monitoring strategies are discussed in [127]. The influence of climate change 

on drinking water systems is highlighted in [128]. Optimization efforts often 

focus on costs, linked to chemical usage, energy, and maintenance. [129] 

examines proportional effects of chemical consumption on quality indicators, 

while [130] considers costs at a general level. Automation strategies also 

reduce costs, as shown in [131] with frequency‑converter pumps in small 

facilities. A broader cost perception study of distribution networks is presented 

in [132]. Further research explores reservoir operation optimization to 

minimize pollution losses [133], energy reduction in desalination [134], and 

raw source water impacts on treatment [135]. Long‑term degradation of water 

sources is documented in [136], emphasizing the need for systematic data 

collection and learning. Predictive approaches include turbidity forecasting 

with early warning systems [137], anomaly detection in distribution via 

supervised learning [138], SCADA‑based anomaly identification [139], and 

missing data compensation [140]. Integration of weather data [141] 

demonstrates how IIoT concepts, particularly proactive historian applications, 

can enhance efficiency in water systems. 

In wastewater treatment, Sandu et al. [142] conducted a numerical study 

introducing wall structures to prevent low‑velocity flows that promote 

sedimentation and disrupt treatment. Similarly, [143] proposed predictive 

control schemes to enhance stability and efficiency. Neural networks are 

widely applied in industry for improved decision‑making with accumulated 
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data. Examples include defect detection via deep learning [144], CNNs for 

sheet‑metal fixture layouts [145], and IIoT deep learning syntheses [146]. 

Prediction of faults and uncertainties is increasingly important, with LSTM 

recurrent NN models used for data‑driven approaches. For instance, [147] 

predicts faults by generating expected images one second ahead, while [148] 

forecasts production progress. Other solution includes probabilistic 

temperature prediction in additive manufacturing [149]. Research must 

remain process and data driven, grounded in real industrial systems. 

Optimized LSTM strategies for chemical fault diagnosis [150] and short‑term 

voltage stability assessment [151] demonstrate superior performance 

compared to traditional methods, though further industrial deployment is 

needed. In the water domain, improvements are largely data‑driven and 

NN‑based. CNNs are applied to pipe leakage detection [152], CNN/LSTM 

combinations to underground drainage sensing [153], and Raspberry Pi‑based 

CNN/LSTM systems to mechanical water meters for leakage detection [154]. 

Prediction studies remain limited: [155] forecasts water quality extremes but 

lacks local adaptability; [156] addresses pipe failure prediction without clear 

timeframe applicability; and [157] focuses on company needs but fails to 

achieve the required prediction horizon for maintenance/control adjustments. 

Predictive maintenance [158] represents a key transformation area under 

Industry 4.0, reducing downtime, operating costs, and enhancing efficiency, 

productivity, and profitability [159]. Implemented solutions, such as [160], 

already demonstrate significant improvements in manufacturing. 

Furthermore, work [K‑14] details predictive maintenance by forecasting 

cylinder defects in the automotive industry. 

Sections 4.1 is presenting the initial phase development of the low-cost 

decentralized historian from [K-33].  

Section 4.2 introduces the concept of a Proactive historian and details the 

evolution to obtain a non-invasive automatic solution that reduces energy 

consumption in the drinking water facilities. Also, the progress towards long-

term testing of the solution is presented. The information is from papers [K-

28], [K-23], [K-17], [K-12]. 

Section 4.3 presents the solution from [K-7], based on an LSTM decentralized 

edge AI technique within the proactive historian that was able to predict faults 

and indicator values in the water sector. 

Section 4.4 extends the non-invasive analysis and correction idea to 

wastewater treatment plants (WWTP) with the information from [K-36], where 

an energy reduction technique is developed, and the information from [K-24] 

where weather-based prediction is included in the historian.    
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Section 4.5 details the findings from [K-32], where improvements were 

realized in the functioning of groups of WWPSa using a non-invasive solution 

developed within a higher-level wrapping structure. 

Section 4.6 presents an efficiency increase solution in the automotive 

manufacturing from [K-20], where image processing hardware-software 

structure was researched to detect ECU defects at the EoL production. 

 

4.1 Decentralized Low-Cost Proactive Historian. 

The section describes briefly the lightweight and low-cost historian developed 

in a first phase in [K-33] that is based on OPC UA interfacing, but extensible 

also for other protocols. A platform‑independent historian was developed for 

edge deployment, suitable even for automation panel integration without 

SCADA supervision. The Java‑based application embeds the Node‑Red 

platform for SCADA interfacing and uses a SQLite database. Designed for high 

TRL, it supports long‑term communication monitoring and reconfiguration, 

enabling rapid applicability in the water industry. It also serves as a foundation 

for further research on automatic stored‑data analysis, generating conclusions 

for diverse water objectives and transmitting them in appropriate formats for 

control adjustments or alarms. Commercial SCADA software typically offers 

limited logging/archiving functions, with data manipulation constrained by 

licensing, file formats, or restricted export options. Historian software is often 

sold separately at high cost. Local SCADA control rooms, covering WTPs, 

WWTPs, chlorination stations, pumping stations, wells, reservoirs, and 

measurement points, hold the largest data volumes. Effective local historians 

must balance interoperability with cost‑benefit considerations. 

Practical experience shows that only ~5% of SCADA control rooms use 

separate historians, mostly in large treatment facilities. These are expensive, 

platform‑dependent, LAN‑connected products, rarely used by operators 

beyond data export or archiving. Low‑competency operators often struggle 

with complex interfaces, while skilled operators use them sparingly. Downtime 

of SCADA systems frequently disables historians until external maintenance 

intervenes, as their structure is tightly coupled to vendor software. 

At the automation panel level (WWPSs, wells, pumping stations, chlorination 

stations, small WTPs), historians are absent, with only short‑term HMI logging 

available. Thus, a low‑cost, lightweight historian is needed, adapted for rapid 

panel integration and accessible to operators with limited IT skills. 

At the central/regional SCADA level, historians are typically connected to 

SCADA servers or, where permitted, to SCADA gateways. Operators use them 



100 
 

mainly for archiving, exporting, and offline analysis, with historical data later 

supporting higher‑level processing. Several issues arise at this level: 

- Data collected in regional control centers is limited to generic information. 

- Water distribution companies cover large areas (one or several counties), 

so local processes are not monitored in detail. Attempts to centralize large 

volumes of data from local automation panels (via OPC/OPC UA servers) 

often result in misrepresentation, leaving historians as mere storage tools 

with numerous unhandled alarms. 

- Instead of transferring large amounts of live data for costly central analysis, 

conclusions should be derived locally and then processed at the central 

historian for clarity. 

- Communication failures with local systems sometimes lead to data loss. 

The overall historian architecture and its integration with other OPC UA 

interfacing structures is illustrated in Fig.  4.1-1. The historian structure is 

defined by several key characteristics: OPC UA interfacing with full security 

compliance, extensible to legacy protocols (e.g., Modbus, S7); Integration 

with control structures, transmitting processed conclusions to local 

automation for algorithm adjustments; Address space browsing and variable 

definition for historian inclusion; Database management, storing selected tags 

with timestamps, adaptable to variable or table changes; Querying and 

exporting data in online/offline modes across chosen intervals, supporting 

.xls, .pdf, and .csv formats; Operator usability through a simple GUI; 

Continuous monitoring of the Java application, Node‑Red, and SQLite, with log 

file generation for analysis while maintaining lightweight operation; Fault 

tolerance, ensuring uninterrupted historian operation despite server timeouts, 

discarded sockets, exceptions, or user errors; Modularity, enabling future 

development of automatic data analysis and local algorithm adjustments for 

water industry objectives.  

The historian was validated in real scenarios, specifically at a WTP serving 

~8000 inhabitants. This facility operates with an older WinCC 7.2 SCADA 

system and a Connectivity Pack extension exposing tags via OPC UA servers. 

The application supports self‑monitoring, fault handling, and auto‑diagnosis 

across all three levels: the Java core, Node‑Red interface, and SQLite 

database. The GUI includes a Status section providing operators with essential 

system information (see Fig.  4.1-2). A status log file is maintained for 

engineering, recording operational details, encountered faults. Real‑system 

testing revealed periodic timeouts indicating connection loss to the local OPC 

UA server. These faults required automatic Node‑Red interventions to 

reinitialize the connection. The number of restarts is tracked, with the Overall 

section displaying information linked to the most recent connection start. 
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Fig.  4.1-1 General architecture of the developed historian and the relation with OPC UA structures. 

The GUI Configuration section is presented in Fig.  4.1-3. Configuration is 

performed entirely within the application. Database tables are indexed by 

timestamp and server ID, while the configuration file remains encrypted on 

the local operating system. OPC UA interfacing supports five security policies 

(None, Basic128, Basic128Rsa15, Basic256, Basic256Sha256) and three 

modes (None, Sign, Sign&Encrypt), with user credential management.  

The Data section enables stored information manipulation. Export and chart 

modules—critical for water operators—allow table selection, each defined by 

non‑overlapping timestamp ranges. Both modules operate in Running and Not 

Running states. Data can be exported for analysis in .pdf, .xls, and .csv 

formats, while variable evolution across selected tables and time ranges can 

be visualized in charts, as shown in Fig.  4.1-4. 

 
Fig.  4.1-2 Status section of the GUI. 



102 
 

 
Fig.  4.1-3 Configuration section of the GUI. 

 
Fig.  4.1-4 Output water pressure evolution inside a selected time interval represented within the chart module. 
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4.2 Non-Invasive IIoT Solution within the Proactive Historian to Reduce Energy 

Consumption for Drinking Water Facilities. 

Introducing the concept of decentralized Proactive historian means to gain 

better knowledge about the process on the edge, to process data, to conclude 

an improvement scenario and to be able to execute the efficiency increase 

solution. This was a four step strategy for a significant accomplishment within 

drinking water facilities. First, [K-28] established data dependencies between 

the water source selection and the energy consumption, followed by [K-23] 

that processed data, developed the strategy to improve and to action. Work 

[K-17] completely automated the strategy, in order to continuously identify 

and update the quality of the water sources, respectively [K-12] took the 

research to the highest-level and apply the strategy after long-term usage, 

making a process aware historian.    

 

4.2.1 Proactive historian identifying and applying the energy reduction strategy 

Works [K-28], [K-23] applied the decentralized historian on drinking water 

facilities (DWF), and transformed it in a proactive edge solution. The current 

section focuses on a typical DWF that is presented in Fig.  4.2-1 (a functional 

real process) and consists of water sources, WTP, and water distribution 

facility (WDF). The water wells (WW) have two main local control loops in the 

automatic regime that guide the water pumping. The primary local control 

loop is flow‑based, with a secondary level‑based loop serving as redundancy. 

Operator‑defined set‑points are fixed. The analyzed scenario corresponds to a 

developed DWF. The DWF includes six WWs, though only four operated in 

automatic mode during the initial analysis period. 

The water from the WWs flows into the WTP as presented in Fig.  4.2-2. Water 

treatment involves aeration, sand and charcoal filtration (4 sand and 2 

charcoal filters), disinfection via chlorine stations, and sludge treatment. Sand 

filters reduce turbidity, while aeration and charcoal filtration regulate pH and 

conductivity. Maintaining legal limits requires significant energy and chlorine 

consumption (e.g., blowers, filter maintenance, chlorine injection). Filters are 

frequently cleaned with air and water to prevent clogging, leading to high 

energy use and water losses. Chlorine dosing employs a flow‑based control 

strategy, supplemented by a closed‑loop residual chlorine feedback system. 

This secondary loop requires continuous water flow from WWs to the WTP and 

approximately 30 minutes to achieve efficiency. 

After the filters the water is taken over by the WDF (see Fig.  4.2-1). A typical 

WDF includes a pumping station (PS3), electric valves, and reservoirs. In this 
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study, PS3 operates with three pumps equipped with frequency converters 

(FCs). Water distribution and request are managed by 3 control algorithms: 

- Pressure‑based loop: regulates distribution and rotates pumps based on 

operating hours. 

- Primary level‑based loop: maintains reservoir levels within hysteresis 

limits. When levels drop, water is requested from WWs. Variations in 

consumption and reserve issues can prevent strict hysteresis control, 

leading to higher energy use and treatment disturbances. 

- Secondary flow‑based loop: anticipates peak demand by comparing 

Flowmeter 4 and Flowmeter 1 values. If the difference exceeds a threshold, 

water is requested from WWs. This loop responds faster than the primary 

one. Both water‑requesting loops select WWs based on operating hours and 

must account for water and time losses within the WTP. 

At night, reduced demand allows the level control algorithm to stop water 

sources. However, due to network losses and fixed WW flow set‑points, 

sources may start and stop repeatedly, causing pump wear and process 

disturbances. Short activations prevent the WTP from reaching stable 

operating parameters (e.g., chlorine reaction, aeration, filtration). 

WWs differ in flow capacity and water quality, which vary over time. Analysis 

of more than 50 DWFs revealed that automation solutions rarely consider WW 

quality indicators. By monitoring parameters such as residual chlorine, blower 

hours, filter cycles, WW states, flows, and operating times, quality indicators 

can be adapted. This enables variable flow set‑point distribution, reducing 

energy, chemical consumption, and equipment costs, since frequent starts 

increase maintenance and replacement needs. SCADA architectures typically 

equip WWs with PLCs, either directly connected to WTP control rooms or 

integrated into WDF PLCs. In older systems, WWs are activated by aeration 

tank levels or local pressure changes, without reservoir‑based requests. These 

legacy solutions lack advanced control strategies, though they could yield 

higher energy savings. Modern WTP automation employs redundant PLCs, 

with WDF PLCs integrated into SCADA systems centered on redundant 

servers. Electrical parameters are monitored in real time, supporting more 

reliable and efficient operation. Fig.  4.2-3 illustrates key electrical for both 

(redundant) power lines. Energy data from the WTP automation (MCC), WDF 

(PS3), internal services panel, and total WTP+WDF consumption are central 

to the proposed solution. A DWF is critical infrastructure and research requires 

monitoring, with detailed justification, strategy, approvals. Interventions on 

legacy systems must remain non‑invasive, while even newer WTP automation 

may face owner‑imposed constraints, limiting the capacity of tested strategies.  
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Fig.  4.2-1 A drinking water facility (DWF). 

 
Fig.  4.2-2 A water treatment plant (WTP). 

 
Fig.  4.2-3 Main electrical parameters monitoring of the WTP and water distribution facility. 

Improving DWF efficiency requires reducing energy and substance 

consumption while increasing productivity and availability. Long‑term data 

analysis of thousands of process tags is used to derive an optimal cost‑oriented 

recipe, which is first tested on process models and then non‑invasively 

implemented at the edge/fog level of real systems. The solution interfaces 

with local systems to exchange data and apply the identified recipe without 

disrupting automation. Communication with WTP SCADA typically uses OPC 
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UA. When WDF and WWs are fully integrated, redundant SCADA servers 

handle interactions. The historian also supports PLC interoperation via legacy 

protocols, with direct PLC communication serving as backup during SCADA 

maintenance or OPC UA failures. 

Data gathering and dependency analysis enable identification of WW quality 

indicators, linked to total energy consumption. These indicators guide the 

establishment of priorities and flow set‑point references for each WW. The 

strategy achieves energy efficiency when system reactions are based 

simultaneously on WW priority indicators and flow set‑points. 

After analyzing the local process, a priority indicator is established for each 

WW. The priority will be a selection tool based on water quality (PQf) and 

functioning hours (PHf), and it will influence the flow set-point (FW_f) of the 

well’s local flow-based control loop. Variable flow set‑points can replace fixed 

values, with formulas developed for priority indicators and flow references 

(see [K‑23]). These account for pump protection, well capacity limits, and 

reservoir hysteresis levels. The efficiency improvement solution within the 

proactive historian was validated on a calibrated DWF model using real input 

data and later on a real system. Direct experimentation on critical 

infrastructure is not feasible, so testing required long‑term procedures. Two 

scenarios were examined. In Scenario 1, initial results from data 

accumulation, analysis, and conclusion phases, were tested on models and 

short‑term real systems under strict operator supervision, demonstrating 

energy efficiency gains. In Scenario 2, two‑week continuous testing was 

involving the real plant, with operator‑imposed constraints. Flow set‑points for 

WWs remained fixed, no additional wells were activated, and WW4 was 

replaced with WW1 within selected wells. The solution was thus tested without 

all modules (variable flow set‑points and full well activation). Supplementary 

proactive historian analysis extended over an additional year of data. 

The scenarios focus on the specified DWF, where local PLCs from the WDF and 

WWs communicate via the S7 protocol. The WTP automation employs two 

redundant S7‑400H PLCs, while the SCADA system is WinCC 7.2 with 

Connectivity Pack, operating on two redundant servers. In the first test 

scenario, Fig. 4.2-4 shows the flow evolution of four WWs under fixed flow 

set‑point operation, without proactive historian intervention. Water demand 

activates WWs without accounting for source quality or quantity. 

The first scenario (Fig. 4.2-5–4.2-8) applies priority setting results (Fig. 4.2-

6) for the four WWs considering functioning hours (Fig. 4.2-5) and water 

quality indicators. The evolutions of WWs flow references, the reservoir level, 

and the total flow set-point for the WWs after applying the solution, are 
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presented in Fig. 4.2-7. The impact on this short-term test on reducing energy 

consumption would be, from Fig. 4.2-8 (percentage power differences 

between the system with and without the solution), about 9%. 

 
Fig.  4.2-4 Example of flow evolution from the water wells with fixed set-points. 

   
Fig.  4.2-5 Water wells functioning hours in the test scenario. 

The second scenario involved two‑week supervised test on the real system 

under constrained conditions, with fixed flow set‑points for WWs. During 

extended data analysis, changes in local operation were observed, manual 

WW activation/deactivation driven by operator preferences or equipment 

faults. Over 1.5 years, operators typically switched WWs every 4–7 months. 
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Fig.  4.2-6 Water wells priority indicators in the test scenario. 

   
Fig.  4.2-7 The resulting evolution of: the total flow requested from the water wells, the level in the distribution 

tank, and the flow set-point for each water well. 
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Fig.  4.2-8 Percentage power difference after using the solution. 

It can be concluded that integrating a new water source requires at least four 

months of consistent data analysis before the proactive historian can correctly 

incorporate it into decision and control algorithms. 

During the two‑week period (23 November–07 December 2019), the flow 

evolution of four WWs (WW1, WW2, WW3, WW7) and the corresponding total 

energy consumption were recorded and stored. Fig. 4.2-9 shows the 1st week 

data. The flow evolution of four WWs and the corresponding total energy 

consumption were recorded over four weeks (11 January–08 February 2020) 

without applying the efficiency solution. For accurate comparison, these tests 

were conducted during a period with similar water demand and consumption 

as the initial two‑week trial, excluding the winter holiday interval. Fig. 4.2-10 

presents an example of the stored data for the 4th week. 

Table 4-1 presents the weekly initial and final energy index values, weekly 

energy consumption, and average consumption for both the two‑week period 

(2.7 MWh) and the four‑week period (3.5 MWh). The percentage difference 

demonstrates the efficiency of the proposed solution, with the study 

identifying a consistent ~30% increase in energy consumption. 

 

   
Fig.  4.2-9 Results with constrained solution. Well flows (mc/h) and energy consumption (kWh) in Week 1 of tests. 
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Fig.  4.2-10 Results without the solution. Well flows (mc/h) and energy consumption (kWh) in Week 4 of tests. 

Table 4-1 Total energy consumption (MWh) of the drinking water facility (DWF). 

 

Two weeks with 
constrained FDC 

solution 
(23 Novembe 2019–

07 December 2019) 

Four weeks without FDC solution 
(11 January 2020–08 February 2020) 

 Week 1 Week 2 Week 1 Week 2 Week 3 Week 4 
Init. val. (MWh) 722 724.6 742.7 746.3 749.8 753.3 
Final val. (MWh) 724.6 727.4 746.3 749.8 753.3 756.7 

Consumption (MWh)] 2.6 2.8 3.6 3.5 3.5 3.4 
Average (MWh) 2.7 3.5 

Difference (%)   +30% 

 

4.2.2 Proactive historian in complete solution and long-term testing for the energy reduction 

Works [K-17], [K-12] were continuing the previous advances. The research 

contributes to the effort towards obtaining a proactive historian able to 

increase the efficiency of the supervised industrial system. The key 

contribution in [K‑24] is the automatic identification and adaptation of water 

well quality indicators through continuous long‑term analysis within the 

proactive historian. Further adjustments and testing of concepts were 

performed to advance the technological readiness level. 

In practice, water quality varies across DWTP sources and changes over time. 

When a new source is commissioned, a technical datasheet is created based 

on laboratory analysis of sampled water. However, as quality evolves due to 

factors such as pollution or overuse, no sensor devices exist to update a 

general quality indicator. Operators often rely on empirical observations (e.g. 

noticing reduced equipment strain when requesting water from certain 

sources) but these are subjective and non‑scientific. Thus, the proactive 

historian must continuously analyze operational data, derive reliable quality 

indicators, and react autonomously. By integrating flow distribution, operating 
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times, water sufficiency, and maintenance factors, the historian can establish 

strategies that reduce energy consumption while optimizing source utilization. 

The proactive historian must be flexible and adaptive, evolving with system 

requirements. An objective function (e.g. Fig. 4.2-11) should be defined, with 

appropriate constraints applied to guide optimization.  

As detailed in [K‑12], the proactive historian is designed to be process‑aware. 

Local data is contextualized, process components are understood, causal 

relationships are identified, and the impact of actions is recognized. Fig. 4.2-

12 illustrates the process‑aware interface, with components, constraints, and 

the objective function. A key characteristic of the historian is flexibility, 

enabling modification of process components and constraints.  

   
Fig.  4.2-11 Optimizing objectives choice inside the proactive Historian application. 

   
Fig.  4.2-12 Optimizing objectives choice inside the proactive Historian application. 

Building on earlier work with the proactive decentralized historian, [K‑12] 

examined a long‑operated water treatment and distribution facility. Operators 

had established a local regime based on observed process changes, 
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restrictions, and response strategies. For this case study, the historian was 

tailored and tested under a suboptimal scenario, where water sources were 

manually selected to balance availability and energy efficiency, without 

accounting for failures or demand variations. This scenario was chosen as a 

challenge: energy use was near minimal, and daily demand could be met by 

two wells operating close to optimal points. 

The proposed low‑cost historian aimed to improve facility operation by 

enhancing energy efficiency and addressing issues such as extended 

personnel hours, inability to meet rapid demand changes, and equipment 

faults from heavy use. Its design ensured non‑invasive integration with legacy 

systems. The goal was to demonstrate the historian’s ability to adapt to 

suboptimal industrial scenarios, generate process‑aware recipes, and 

interoperate with legacy systems to apply improvements. 

Over time, facility practices shifted. To minimize energy consumption, 

operators discontinued automatic activation and source selection based on 

reservoir levels and operating hours, due to difficulties in establishing flow 

set‑points. This created new research challenges: 

- Minimal room for further energy reduction: Operators already selected 

sources based on prior research, with some scenarios requiring only two 

wells to meet demand at near‑optimal drive frequencies. 

- Fixed flow set‑points: Wells operated continuously at constant flows, 

benefiting from lower night tariffs but failing to adapt to demand variation 

or equipment faults, leading to wasted water or shortages. 

- Uneven operating time distribution: Manual regimes caused wear and 

defects. One source could no longer sustain flow‑based control, while 

another showed large fluctuations, further limiting efficiency gains and 

underscoring the need for full automation. 

A further challenge was to extend historian testing over longer autonomous 

periods while maintaining non‑invasive interoperability with legacy system. 

The identified challenges were translated into historian tailoring and testing 

tasks, summarized as: Automatic well selection based on accumulated data, 

prioritizing energy efficiency while considering operating hours; Automatic 

activation of wells according to varying demand, peak‑hour accumulation, 

variable flow set‑points, and pump frequency constraints (upper, lower, 

optimal); Legacy system interoperability to set flow references and control 

pumps, with multiple checks for manual regimes, level‑based operation, fault 

detection, and proper sampling periods; Safety procedures to deactivate 

historian‑based automation in case of malfunctions or operator request, 
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restoring previous local settings before decoupling; Performance evaluation 

under suboptimal regimes and extended operation periods. 

The optimizing algorithm was refined to include a hysteresis factor (h), 

expressed as a percentage of the minimum source flow.  

E.g.  ℎ =
1

2
∙ 𝑚𝑖𝑛𝑖𝑚𝑢𝑚_𝑛𝑒𝑥𝑡_𝑠𝑜𝑢𝑟𝑐𝑒_𝑓𝑙𝑜𝑤_𝑠𝑒𝑡𝑝𝑜𝑖𝑛𝑡  

If the difference between the total distributed flow and the sum of flows from 
active sources is less than ½ of the minimum flow of the next idle source (by 

priority), that source is not started, preventing pump wear. The same 

hysteresis rule applies when stopping a source. A fixed hysteresis value 

proved more efficient than variable values, which require frequent updates 

and correlation with source evolution but showed no benefit. The historian was 
updated to read minimum and maximum flows from a configuration file, 

allowing operators to adjust limits as they change over time. 

Automation at the WTP uses OPC UA tags for pump start/stop commands 

rather than a 0-based flow reference convention, requiring algorithm 
adjustments to set these tags correctly. Manual well selection toward 

automation demanded additional condition checks and reactions to legacy 

system behavior. Specific OPC UA tags for start/stop commands, reference 

flows, and total delivered flow had to be defined and verified, significantly 
increasing the algorithmic and protection structures for system interoperation. 

Finally, in the targeted WTP, filter washing occurs every 24 hours, consuming 

~50 m³ of treated water from a tank with 400 m³ capacity, completed in ~30 

minutes. To compensate for this rapid level drop, the historian was adjusted 

to compute the target water flow not as equal to the distribution flow, but as 
an augmented value accounting for filter washing operations. 

flow_required_from_sources = p% * DWTP_output_flow.  

(where p% was fixed at 120%, but may vary between 110–130% depending 

on the treated daily volumes in the WTP, which fluctuate seasonally). 

The tank’s water level was maintained by a gradual rise compensating 

filter‑cleaning drops, while experiments monitored washing cycle frequency 

and clogging status. The solution interfaced with the legacy system through 

two loops: Monitoring loop, where the historian collected OPC UA tag values 

every 20 s from the WTP server; Optimizing loop, where the historian retrieved 

the latest output flow, applied the optimization algorithm, and wrote updated 

reference flows and start/stop commands through OPC UA at 60 s intervals. 

The historian was deployed on a Raspberry Pi 4 Model B in the WTP command 

room, connected to a UPS and accessible remotely via SSH tunneling. It 

autonomously analyzed stored data, generated optimization recipes, and 

applied them non‑invasively. For testing, the historian operated in monitoring 
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mode from 30 August 2022, with optimization tested during a 50‑hour interval 

(27 February–01 March 2023). During this period, operators made no 

adjustments, leaving water source control entirely to the historian. The first 

evaluation focused on daily energy consumption, using three months of prior 

data. Monthly energy indexes were converted to daily averages, with results 

summarized in in Table 4-2, demonstrating energy reduction. 

Table 4-2 Total energy consumption per day comparison during test with previous months 

 December 2022 January 2023 

February 2023 

01.02 - 27.02 (before 

test) 

Energy index start (kWh) 1252010,25 1266546,5 1281298,75 

Energy index end (kWh) 1266546,25 1281298,625 1293673,25 

Total energy consumed (kWh) 14536 14752,125 12374,5 

Energy per day (kWh) 468,90 475,875 475,942 

Energy/day (kWh) during test 454,38 

Comparison 
- 14,52 kWh/day  

- 3,1% 

- 21,495 kWh/day  

- 4,51% 

- 21,562 kWh/day  

- 4,53% 

The second analysis compared total energy consumption during the test 

interval with similar periods. Specifically, the same Monday 13:30–Wednesday 

15:30 interval was examined across three of the four weeks preceding the 

test. In addition, comparable 50‑hour intervals (Wednesday–Friday) were 

analyzed in both the week before and the week of the test. Across all five 

reference intervals, results consistently showed energy consumption 

reductions when applying the optimizing strategy, as illustrated in Table 4-3. 

Table 4-3 Total energy consumption comparison during test with other similar 50-hours long intervals 

 

30.01.2023 13:30 

- 01.02.2023 

15:30 

(Monday –  

Wednesday) 

06.02.2023 13:30 - 

08.02.2023 15:30 

(Monday –  

Wednesday) 

13.02.2023 13:30 - 

15.02.2023 15:30 

(Monday –  

Wednesday) 

22.02.2023 13:30 - 

24.02.2023 15:30 

(Wednesday –  

Friday) 

01.03.2023 15:30 - 

03.03.2023 17:30 

(Wednesday –  

Friday) 

Energy index 

start (kWh) 
1280569,5 1283990,5 1287399 1291612,875 1294833 

Energy index 

end (kWh) 
1281572,5 1284977 1288386,5 1292580,5 1295789,5 

Total energy 

consumed 

(kWh) 

1003 986,5 987,5 967,625 956,5 

During test (27.02.2023 13:30 - 01.03.2023 15:30 Monday - Wednesday) 

Energy index start (kWh)  1293886,25 

Energy index end (kWh) 1294832,875 

Total energy consumed (kWh) 946,625 

Comparison 
- 56,375 kWh  

- 5,95% 

- 39,875 kWh  

- 4,21% 

- 40,875 kWh  

- 4,31% 

- 21 kWh 

- 2,22% 

- 9,875 kWh 

- 1,03% 
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The third analysis evaluated the water volume entering the WTP, using energy 

consumption/water volume as the metric. Two comparison intervals were 

considered: the entire week preceding the test and a similar 50‑hour interval. 

Results, summarized in Table 4-4, demonstrate effective energy consumption 

optimizations during the test period. 

Table 4-4 Total energy consumption per m3 of water entering WTP comparison during test with previous intervals 

 

20.02.2023 00:00:00 – 

27.02.2023 00:00:00 

(the week before test) 

22.02.2023 13:30 – 

24.02.2023 15:30 

Total energy consumed (kWh) 3156,125 967,625 

Total water volume entering DWTP (m3) 2813,8 816 

Total energy / water volume (kWh / m3) 1,121 1,186 

During test (27.02.2023 13:30 - 01.03.2023 15:30) 

Total energy consumed (kWh) 946,625 

Total water volume entering DWTP (m3) 882,9 

Total energy / water volume (kWh / m3) 1,072 

Comparison 
- 0,049 kWh/m3  

- 4,37% 

- 0,114 kWh/m3  

- 9,61% 

Under these conditions, the results were consistent. No stability issues were 

observed during the 50‑hour test: the historian software ran without errors or 

interruptions, interoperability with the monitored system was seamless, and 

the WTP operated under normal quality parameters. The distribution tank 

remained safely above risk limits, even after filter washing, and no operator 

intervention was required. Consequently, the historian demonstrated a high 

TRL level in this approach. 

Replacing manual source selection with the proactive historian enables system 

adaptation to diverse water needs, including population demand, equipment 

failures, poor source quality, clogged filters, or pipe breaks. The historian 

adjusts water source flows within 60 seconds of sudden changes, ensuring 

responsive and efficient operation. Another observation concerns equipment 

wear. Overuse of individual sources is mitigated by considering their operating 

hours, yet this hypothesis requires long‑term validation of the solution. 

 

 

4.3 Long Short-Term Memory-Based Prediction Solution Inside a Decentralized 

Proactive Historian for Water Industry 4.0. 

The current section is showcasing the study from [K-7]. Local systems in the 

water sector are typically centralized within SCADA control centers at local, 

regional, and central levels. However, as information ascends the hierarchical 
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pyramid, it becomes filtered and generalized, reducing knowledge of local 

processes and limiting the ability to react automatically at the operational 

level. Current digital transformation research, aligned with Industry 5.0 

principles, emphasizes decentralization and increased edge‑level processing. 

Consequently, solutions that exchange process data and implement LSTM 

neural network strategies should be deployed at the edge/fog level, close to 

SCADA systems or automation panels. 

The proactive historian is designed as a low‑cost decentralized solution 

capable of interfacing with legacy systems, collecting and analyzing data, 

identifying dependencies, and achieving objective functions under constraints 

in a process‑aware manner. It can act directly on local automation to 

implement optimized recipes. This approach opens significant research 

opportunities in the water sector, particularly when industrial data is applied 

to specific scenarios and process structures, requiring tailoring and long‑term 

testing. An intensive project to develop and validate the proactive historian in 

real scenarios began in July 2022, with research steps and current limitations 

outlined in the study (see Fig. 4.3-1). Pilot structures were initiated within 

operational drinking water and wastewater legacy systems, with proactive 

historians tailored for specific scenarios. 

This section addresses prediction, a critical element for meaningful 

improvements that must be grounded in real systems. Two prediction targets 

were defined: Primary target - equipment fault prediction, a key industrial 

research requirement; Secondary target - prediction of analog process values 

to enable non‑invasive control adjustments in existing automation. This need 

arises from the high time constants in certain treatment processes, where 

immediate control changes cannot achieve desired effects. Such situations are 

common in the biological phase of wastewater treatment and in drinking water 

treatment (e.g. chlorine correction).  

In Fig. 4.3-1, the third step of the research divides into two branches of the 

prediction algorithm, followed by a fourth step adapting the strategy to the 

low‑cost historian infrastructure: 

- Step 3 – Branch 1: Fault prediction. Fault prediction required datasets 

containing equipment faults. All process equipment was monitored, with 

experts identifying critical elements and time objectives. The chosen 

method was an LSTM recurrent neural network (NN), applied through: 

training on the initial dataset, validation with a second dataset, further 

validation using newly acquired data. 
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- Step 3 – Branch 2: Process value prediction. Similar actions were applied to 

stateless variables, with the algorithm tailored for analog value prediction 

to support non‑invasive process control. 

   
Fig.  4.3-1 Optimizing objectives choice inside the proactive Historian application. 

Step 4 is the Adaptation to low‑cost decentralized historian infrastructure. The 

prediction strategy was adjusted to account for: Reduced sampling rate, 

limiting data volume and processing time; Simplified NN model complexity; 

Smaller variable sets. An additional research goal was to enable independent, 

automatic algorithm improvement by developing and validating incremental 

training within the historian. Future work will compare on‑condition batch 

training with incremental approaches. 

Step 5 is the Autonomous objective selection. Further research will integrate 

additional AI techniques to: Define prerequisites for fault prediction (e.g. 

minimum fault counts) and process value prediction (e.g. values improving 

time‑constrained processes); Identify appropriate variable sets for chosen tag 

values; Autonomously validate incremental training; Establish conditions and 

constraints for the historian to evaluate, validate, and deploy new algorithms 

alongside legacy systems, with safety, ethical analysis, upgrade procedures. 

 

4.3.1 Prediction Solution in the Proactive Historian 

For implementation, Microsoft Visual Studio Code was used with Python 3. 

Data structuring and visualization employed Pandas, NumPy, Matplotlib, 

Scikit‑learn (train_test_split), and Beautiful Soup. The AI model was 

developed using TensorFlow (Sequential, Layers, MeanSquared, Adam) and 
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Scikit‑learn (MinMaxScaler, Normalize, Accuracy_score). The next step was to 

select the most suitable neural network model for predicting future values. 

Since the dataset consists of time‑ordered sequences, the problem was framed 

as time series forecasting. An LSTM recurrent neural network was chosen for 

its ability to capture long‑term dependencies, selectively retain or discard 

information via input, output, and forget gates, and handle non‑linear, 

non‑stationary data. Sequential processing preserves event order, making 

LSTM particularly appropriate for this case. 

Two generic LSTM models were developed: a complex model (~100,000 

parameters) and a simpler model (~19,000 parameters). Subsequent 

prediction tests showed that the simpler model (see Fig. 4.3-2) achieved equal 

or superior performance compared to the complex one.  

   
Fig.  4.3-2 The simpler model details. 

The simpler sequential model comprises the following layers: 

- InputLayer – defines input format, with size determined by timesteps 

(sequence length) and nr_inputs (features/OPC UA tags). 

- LSTM – 64 units capture temporal dependencies and complex sequential 

relations in the data. 

- Dense – 8 units with ReLU activation, introducing non‑linearity by 

zeroing negative values and retaining positives, aiding non‑linear feature 

learning. 

- Dense – nr_outputs units with linear activation, generating unrestricted 

continuous predictions. 

An important perspective is the integration of Incremental Training to enable 

automated learning and improve model accuracy after real‑world deployment. 

This approach allows the AI to adapt to evolving data and adjust predictions 

accordingly, but mechanisms must be enforced to prevent negative impacts 

on accuracy. Hardware capabilities must also be evaluated to ensure feasibility 

compared to models without incremental updates. 

The architecture is structured as a loop managed by the historian’s Java 

application: Data extraction from the SQLite database into a CSV file, covering 

the most recent 15 hours at 1‑minute intervals; Execution of the LSTM model 

via Python, loading both the input data and the TensorFlow model. Predictions 

generated here also represent the incremental learning step; Processing and 

storage of predictions back into the SQLite database, forming the basis for 

subsequent optimization actions.  
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Adaptive mechanisms include data preprocessing, rolling averages, moving 

medians, real‑time anomaly detection, retraining (incremental and periodic 

full training), and continuous monitoring with KPIs such as accuracy and 

precision. Incremental Training minimizes latency, requires fewer resources 

per update, and scales better than batch training with large datasets. 

However, it demands constant computational resources and lacks advanced 

optimization techniques available in batch training. A hybrid approach, batch 

training during off‑peak times combined with incremental updates, ensures 

scalability, efficiency, and responsiveness. Additional strategies include 

dynamic learning rate adjustment, sliding window methods, prioritized 

memory updates, and regular mini‑batch updates. Concept drift can be 

detected using statistical tests such as the Page‑Hinkley test or ADWIN. 

 

4.3.2 Prediction Case Study and Results 

The WWTP case study serves ~6,000 inhabitants and follows a classical 

sequential process. Two treatment lines are implemented: after mechanical 

inlet treatment, biological treatment occurs in two sequential batch reactors 

with time‑based aerobic and anoxic phases. The plant also includes sludge and 

bypass lines. Control is managed by nine S7‑1200 PLCs connected to a 

redundant SCADA WinCC V13 system via fiber optic ring. The pilot structure 

integrated the proactive historian through two OPC UA servers from SCADA. 

Deployment revealed two issues: Frequent sludge pump failures in biological 

reactors, disrupting continuity and maintenance; Inadequate response of 

biological treatment to sudden CODcr variations, requiring adaptation time. 

Predicting pump faults at least 3 hours ahead and CODcr fluctuations at least 

1 hour ahead would enable timely corrective actions. For implementation, data 

preprocessing was required. The historian, storing data since July 2022, 

monitored 460 OPC UA tags at ~20 sec. intervals. After filtering, data was 

structured for LSTM modeling. Using Scikit‑learn’s train_test_split, datasets 

were divided into 63% training, 30% testing, and 7% validation. 

The first practical application focused on predicting sludge pump status at the 

WWTP, aligned with the predictive maintenance objective of the research. The 

studied pump, one of two handling sludge disposal from the first biological 

reactor, had its status recorded by the historian (see Table 4-5). The input data 

for training the generic LSTM neural network consisted of the selected OPC UA 

tags listed in Table 4-6. These characteristics were essential, as adding or 

removing tags affected model optimality. The pump status served as the 

output variable. The sample size was set to 30 time steps, enabling predictions 

over 5 future hours, with 10 epochs applied to the database. 
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Table 4-5 Mapping of sludge pump values to their significance 

Value Significance 

0 Unknown status 

1 Fault 

2 Not running 

3 and 4 Normal running 

9 Warning 

Table 4-6 List of characteristics for sludge pump failure prediction 

Characteristic significance 
Measuremen

t unit 
Type of value 

Pump status See Table 1 Numerical integer 

Pump automatic mode - Boolean 

Pump remote command - Boolean 

Pump frequency Hz Numerical float 

Pump power kW Numerical float 

Pump current A Numerical float 

Pump energy meter kWh Numerical integer 

Biological reactor sludge stabilization flow m3/h Numerical float 

Biological reactor sludge stabilization volume m3 Numerical float 

The LSTM configuration used a learning rate of 0.001, batch size of 32, 100 

epochs, and Mean Squared Error (MSE) as the loss function. Training and 

testing were conducted on two scenarios, differentiated by the time intervals 

selected for the datasets. Graphical results illustrating the sludge pump status 

prediction for one of the tested scenarios are presented in Fig. 4.3-3 (with the 

actual state of the tags) and Fig. 4.3-4 (only the prediction).  

   
Fig.  4.3-3 Pump state and prediction. 

   
Fig.  4.3-4 Prediction only. 

Model accuracy was evaluated using four approaches: r2_score (Scikit‑learn) 

to compute the coefficient of determination with zero error margin; MSE and 
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RMSE as standard error metrics; A final method applying a 0.5 error margin 

for integer pump status values, allowing extrapolation to compensate 

prediction deviations. All approaches were applied across both scenarios, with 

results summarized in Table 4-7, confirming strong model accuracy. 

 

Table 4-7 Accuracy of trained models – sludge pump prediction 

Evaluation Approach Scenario 1 Scenario 2 

Coefficient of Determination (R2) 0.546 0.546 

Mean Squared Error (MSE) 1.056 1.056 

Root Mean Squared Error (RMSE) 1.027 1.027 

Accuracy (correct/total with 0.5 error margin) 98.625 % 96 % 

The second practical application focused on predicting the CODcr quality 

indicator, using the same generic LSTM neural network as the starting point. 

This application pursued a secondary objective: optimizing legacy process 

control. The selected input characteristics from the available data, used to 

train the LSTM model, are listed in Table 4-8.  

 

Table 4-8 List of characteristics used as input data for neural network training – CODcr prediction at WWTP inlet 

Characteristic significance Measurement unit Type of value 

CODcr mg/l Numerical float 

Phosphate (PO4) mg/l Numerical float 

Ammonium (NH4) mg/l Numerical float 

Acidity (pH) - Numerical float [0-14] interval 

Temperature Celsius degrees Numerical float 

Flow from septic trucks m3/h Numerical float 

Volume from septic trucks m3 Numerical float 

The LSTM configuration employed a learning rate of 0.01, batch size of 32, 50 

epochs, and MSE as the loss function. Results are presented in Fig. 4.3-5 

(predicted vs. actual values) and Fig. 4.3-6 (predictions only). Following the 

accuracy evaluation, the model results were presented in Table 4-9. 

 
Table 4-9  Accuracy of the trained model – CODcr prediction at the WWTP inlet 

Evaluation Approach Result 

Coefficient of Determination (R2) 0.422 

Mean Squared Error (MSE) 173.535 

Root Mean Squared Error (RMSE) 13.173 

Accuracy (with Scikit-learn library) 97.237 % 
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Fig.  4.3-5 Actual value and prediction. 

   
Fig.  4.3-6 Value prediction only. 

 

4.4 Non-Invasive Control Solution for Energy Efficiency in Wastewater Treatment 

Plants. 

Study [K‑24] highlighted the interoperability of the historian, demonstrating 

its ability to augment functional systems with external data. Weather 

information was integrated and analyzed through graph‑based dependency 

methods to predict wastewater treatment values, showing how systems can 

connect and interoperate. 

Work [K‑36] addressed energy efficiency in WWTPs, noting that most 

automation follows a standard oxygen regulation pattern for 

nitrification/denitrification, supported by two‑positional air pressure control.  

Improving energy efficiency remains a major concern in wastewater treatment 

[161]. Companies monitor specific consumptions (energy and substances per 

m³ of treated water/sludge). Blowers are the largest energy consumers. 

Based on data analysis, and recognizing oxygen’s role in reducing ammonium 

while limiting nitrate increase, a Model Predictive Control (MPC) strategy was 

applied to optimize oxygen use. MPC has a strong theoretical background in 

the water industry [162]. Within IIoT and Industry 4.0, invasive interventions 

in existing plants are avoided due to warranties, documentation gaps, and 

infrastructure risks. Interoperability enables higher‑level control structures 

without altering local automation, making it a cornerstone of smart water 

management [163]. With OPC UA servers widely deployed, the proposed MPC 

strategy was designed as noninvasive. 

The research in [K‑36] proceeded in two phases: First - plant data analysis, 

model design and calibration, MPC algorithm development, simulation with 
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real inputs, OPC UA interfacing, and Node‑RED structuring; Second (planned) 

- detailed implementation, parameter refinement, long‑term real‑time testing, 

results analysis, and validation of the developed structure.     

Without detailing the benchmark simulation model, the higher‑level control 

structure was implemented as illustrated in Fig. 4.4-1. 

   
Fig.  4.4-1 The simpler model details. 

The MPC higher‑level control scheme for the WWTP is shown in Fig. 4.4‑2. To 

enhance performance, two measurable disturbances were considered: influent 

flow rate (Q₀) and influent ammonium concentration (NH₄). A linear process 

model incorporating these disturbances was required to implement the 

feedforward component of the MPC strategy. The manipulated variable was 

the set‑point of the in‑plant closed‑loop dissolved oxygen controller. 

All simulations were conducted in Matlab Simulink using real BSM1 plant 

parameters (tank dimensions, external recycle flow, sludge wastage flow). 

The full plant’s differential equations were solved with a 4th‑order Runge–

Kutta routine, employing a fixed integration step of 0.005 hours. 

WWTPInfluent Effluent

HIGHER LEVEL 
CONTROL

NH4

Q0

O2 Setpoint

NH4

NH4 Setpoint
   

Fig.  4.4-2 Inputs and outputs of the application. 
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The algorithm implementation comprised two components: OPC UA interfacing 

and the MPC algorithm. Through the OPC UA Client, once connected to the 

server, the application retrieved WWTP variables including inlet/outlet flow, 

inlet/outlet ammonium, aeration basin oxygen and ammonium, and the 

high/low oxygen limits of the two‑positional controllers. In addition, failure 

tags from flowmeters and ammonium/oxygen sensors were monitored, as 

they could impact system performance. After subscribing to the OPC UA tags, 

Fig. 4.4‑3 illustrates the inlet flow of the WWTP over 8 hours on 27 Oct. 2017. 

   
Fig.  4.4-3 WWTP inlet flow [m3/h] for 8 hours on the 27th of October 2017. 

After processing and validating the subscribed variables at each sampling 

period, the MPC algorithm outputs a two‑element array that adjusts the high 

and low limits of the two‑positional oxygen controller with hysteresis. Fig. 

4.4‑4 illustrates the extraction of these oxygen limit values from the MPC 

decision, the configuration of namespace and tag names, the value insertion 

into the OPC UA server, and the hysteresis display in the dashboard. 

   
Fig.  4.4-4 Oxygen high and low limit value insertion to the OPC UA Server. 

To apply linear MPC in wastewater treatment control, the BSM1‑based model 

required calibration and validation. The system’s dynamic response was 

obtained after running the benchmark for 100 days under normal conditions, 

ensuring steady‑state values. Simulations combined BSM1 operational data 

with real plant data, including influent/effluent concentrations (NH₄, NO₃, P), 

pH, and flow rates (influent, effluent, recycle, wastage) over 30 days, of which 

28 days were used in benchmark runs. BSM1 data corresponded to a 

dry‑weather scenario with a 15‑minute sampling period. 
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Initial open‑loop tests showed that 14 days were sufficient to capture system 

dynamics. Consequently, 50% of the data was used for model calibration, and 

the remaining 50% for validation. Figure 4.4‑5 presents the real data inputs 

employed in the validation benchmark (14 days). 

   
Fig.  4.4-5 Model validation data input (wastewater treatment plant data) 

A comparison of process and model dissolved oxygen concentrations in the 

bio‑reactor tank for days 8 and 9 is shown in Fig. 4.4-6. 

   
Fig.  4.4-6 Comparison between data and model oxygen concentration in bio-reactor tank. 

The fit (F) is calculated, where y/ ŷ  is the validation data/model output. 
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The model achieved a fit of 11.16%, yet given the dynamics of biological 

nitrification and denitrification, the calibration is considered an acceptable 

representation of process behavior. Using real WWTP data, results indicate 
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that aeration energy savings are feasible without compromising purified water 

quality. Fig.  4.4‑7 presents mean daily influent and effluent ammonium 

concentrations over 30 days. Legal effluent limits are 4 mg/L ammonium and 

18 mg/L total nitrogen (sum of nitrate/nitrite and Kjeldahl nitrogen). A clear 

relationship emerges: higher effluent ammonium concentrations correspond 

to lower aeration energy consumption per m³ of treated wastewater. The 

same applies to total nitrogen. Thus, oxygen supply can be reduced, achieving 

energy savings while maintaining compliance with regulatory thresholds. 

   
Fig.  4.4-7 Influent/effluent mean day ammonia nitrogen concentration and Aeration Energy (AE) consumed for 

ammonia nitrogen removal from wastewater. 

BSM1 simulations confirmed the concept. Fig. 4.4‑8 presents results for two 

oxygen set‑points, showing that lower O2 during nitrification increases effluent 

ammonium concentration, yet it remains below the regulatory limit. 

   
Fig.  4.4-8 Effluent ammonia and total nitrogen concentrations for two O2 concentration set-points. 
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At an oxygen set‑point of 2 mg/L, aeration energy consumption was 

253.66 kWh/day, decreasing to 236.36 kWh/day at 1.5 mg/L, showing a 7% 

reduction. Employing a variable reference, adjusted according to effluent 

ammonium concentration, enables significant aeration energy savings. 

 

 

4.5 Non-Invasive Control Solution inside Higher-Level OPC UA based Wrapper for 

Optimizing Groups of Wastewater Systems. 

The current chapter presents the research from [K-32]. Water distribution 

companies continuously develop local automation and SCADA systems for new 

objectives or refurbishments. These projects are executed by entrepreneurs 

under specific contracts: WWPS contracts typically follow the FIDIC Red Book, 

while WWTP contracts follow the FIDIC Yellow Book. Thus, WWPSs are 

implemented according to tendered technical designs with limited execution 

flexibility, whereas WWTPs allow entrepreneurs to propose their own technical 

concepts. Local automation/SCADA solutions result from diverse equipment 

and vendor‑specific implementations, while legacy systems often rely on 

phased‑out or proprietary technologies. According to [164], water control 

structures face interoperability issues due to non‑standard SCADA interfaces, 

leading to integration problems in consumption, distribution, identification, 

and maintenance. As noted in [165], water and wastewater networks require 

retrofitting, extension, and maintenance for functional optimization, with 

flexibility and interoperability being critical in industrial environments.  

Interoperability does not guarantee interoperation. WWPSs are typically 

cascaded, with outputs feeding WWTPs, creating process interdependencies. 

However, analysis shows that entities generally operate independently due to 

differing contracts and requirements. Two major problems were identified: 

- Storm water flows disrupt WWTP processes, causing bypass use, financial 

losses, energy costs, and potential pollution. 

- WWPS blockages from foreign materials or electrical faults can cascade 

upstream, leading to public wastewater overflows. 

Optimization is possible if WWPSs and WWTPs are treated as groups with 

interoperation. Given warranties, maintenance contracts, missing 

documentation, proprietary constraints, invasive changes to local systems 

should be avoided. A non‑invasive control structure, capable of manipulating 

local variables and enhancing existing systems, reduces implementation time, 

cost, and downtime. The proposed solution is modularly implemented within 
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an OPC UA‑based wrapper, integrated into the decentralized historian, and 

designed to optimize WWPS and WWTP behavior collectively. 

 

4.5.1 Group Control Solution for WWPS-WWTP 

The proposed solutions address the two identified problems by considering the 

in‑series sewage system structure (WWPSs–WWTP) shown in Fig. 4.5‑1. The 

architecture consists of a WWPS network linked to the WWTP, where each 

station collects wastewater and pumps it to the next, with WWPS 1 serving as 

the feeder to the treatment plant. 

WWPS 1

L

Level Sensor

WWPS 1

L

Level Sensor

WWPS 2

L

Level Sensor

WWPS 2

L

Level Sensor

WWPS n

L

Level Sensor

WWPS n

L

Level Sensor

WWTP

Sewage 
System

   
Fig.  4.5-1 Sewage system –WWPSs – WWTP architecture. 

Optimizing WWPS–WWTP group control requires designing two higher‑level 

control strategies (HLCS) that address the identified problems without altering 

local systems. These strategies are tailored to the specific WWPS type 

(frequency converter or direct/soft starter). In both approaches, WWPSs act 

as buffer tanks, with two objectives: Reducing WWTP influent flow during 

excess wastewater from pluvial water; Limiting discharge rates toward a 

blocked WWPS to prevent overload. 

When a fault condition is detected, the application shifts the system into a 

fault state, activating higher‑level supervisory control. The proposed solution 

modifies the start/stop set‑points of the WWPS group, achieving a 

non‑invasive control strategy (see Fig. 4.5‑2). The WWPSi manipulated 

variables are pumps start level (Li_ON), pumps stop level (Li_OFF) and pumps 

frequency (F_FCi) for WWPSs equipped with FCs (Frequency Converter). The 

controlled variables are the level or the flow rate. The HLCS monitors also the 

actual wastewater level (Li), the flow if available (Fi) and two fault generator 

parameters (FLTi) - electrical powering fault and emergency button status. 

   
Fig.  4.5-2 HLCS interaction with WWPS from a WWTP–WWPSs network. 
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The optimization concepts for WWPS–WWTP groups are presented separately, 

reflecting the distinct nature of the two identified problems. Key variables are 

defined for clarity: Li_ON_high / Li_OFF_high – elevated pump start/stop levels 

for WWPSi; Li_ON_normal / Li_OFF_normal – normal pump start/stop levels 

for WWPSi; WWTP_inlet_max_flow / WWTP_inlet_min_flow – maximum/ 

minimum influent volumes over a fixed period; WWTP_inlet_actual_flow – 

current influent flowmeter reading; WWPSi_power_failure / WWPSi_emg – 

electrical failure and emergency button states; WWPSi_faulty_state – faulty 

condition of WWPSi (see Fig. 4.5‑1). 

Supplementary wastewater flow volume scenario consists of: A fault is 

detected when WWTP_inlet_actual_flow > WWTP_inlet_max_flow and L1 > 

L1_ON, caused by storm water entering the WWPS network. This activates 

WWPS1_faulty_state. If any upstream WWPS(i‑1) is faulty and Li‑1 > 

Li‑1_OFF_high, then WWPSi_faulty_state is also triggered. 

Higher‑level control steps are described in the following lines. For WWPS 1 with 

frequency converters (FCs), a flow‑based closed‑loop PI control maintains 

influent flow at the WWTP nominal design rate, with FC frequency as the control 

signal. Once pumps are active, L1_ON shifts to L1_ON_high. If supplementary 

inflow forces pump frequency below 30 Hz, L1_OFF is raised to L1_OFF_high, 

stopping pumps. If L1 > L1_OFF_high, low‑frequency protection reduces 

operating frequency to zero. If L1 > L1_ON_high, pumps run at maximum 

frequency until L1 < L1_OFF_high. When pumps stop and 

WWTP_inlet_min_flow is reached, L1_ON and L1_OFF revert to normal levels 

under closed‑loop control. 

For WWPS 1 with direct or soft start, L1_ON and L1_OFF are first shifted to 

L1_ON_high and L1_OFF_high, stopping the pumps. When pumps are off and 

WWTP_inlet_min_flow is reached, the levels revert to L1_ON_normal and 

L1_OFF_normal. 

In upstream WWPSs (i > 1) entering a faulty state, level control maximizes 

storage capacity: Li_ON and Li_OFF move to high values, stopping pumps. For 

WWPSs with frequency converters (FCs), a closed‑loop level control maintains 

the maximum possible level. At the farthest upstream station (WWPS n), if 

wastewater reaches Ln_OFF_high, no buffer remains and flooding must be 

avoided. Operation then follows the hysteresis band [Ln_ON_high, 

Ln_OFF_high], with FCs maintaining Ln_ON_high as the setpoint. All other 

WWPSs (i > 1) follow the same procedure. 

Fault control deactivation initiates when WWPSi_faulty_state clears, Li_ON 

and Li_OFF return to normal values, respectively FCs reset to initial frequency. 

Full deactivation requires sequential recovery from the farthest upstream 
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station toward WWPS 1. If influent volume falls below WWTP_inlet_min_flow 

and L1 < L1_OFF_normal (WWPS 1 empty), the farthest faulty WWPS is 

deactivated. Subsequently, each WWPSi_faulty_state clears when Li+1 < 

Li+1_OFF_normal, WWPS(i+1) is deactivated, and WWTP_inlet_min_flow is 

reached. 

The Blocked WWPS scenario is further described. Fault detection conditions 

include: a) WWPS level not reaching Li_OFF with near‑zero discharge (for 

calibrated flowmeters). b) WWPS level (Li > Li_ON) not decreasing over time 

(widely applicable and automatically identifiable). c) Fault signals such as 

WWPSi_power_failure or WWPSi_emg. 

Higher‑level control procedure begins with WWPS1_faulty_state, treating 

WWPS 1 as blocked. Setpoints L1_ON and L1_OFF are raised to L1_ON_high 

and L1_OFF_high, stopping pumps.  

If L1 > L1_max = L1_ON_high – dL1 (≈ Li_OFF_high), WWPS2_faulty_state 

is triggered, extending buffering to WWPS 2. This process cascades upstream 

through all WWPSs. If the fault persists at the last station (WWPS n), pumps 

operate under faulty setpoints (Li_ON_high, Li_OFF_high). For FC‑equipped 

pumps, Li_ON_high serves as the PI control reference. 

Fault control deactivation for blocked WWPS scenarios (e.g., clogged pipes) 

require maintenance intervention and manual reset via digital tag switch. 

Deactivation begins by restoring L1_ON/L1_OFF to normal values. If L1 < 

L1_OFF_normal, the farthest faulty WWPS (WWPSl) is cleared. Sequential 

recovery proceeds upstream to WWPS 1, with each WWPSi_faulty_state 

deactivated once Li+1 < Li+1_OFF_normal and the downstream station is 

cleared.  

As local automation generalities, each WWPS operates autonomously with: 

Two‑positional hysteresis level control and analogue measurement; At least 

two pumps, with local fault detection (overcurrent, overheating, leakage); 

Manual/automatic selectors, emergency button, and electrical fault detection 

(UPS/generator); Flowmeters measuring discharge flow and volume. 

HLCS monitors available data (levels, hysteresis limits, emergency/fault 

states, flow, pump frequency/state). Fault detection and control are achieved 

by adjusting high/low level limits and, for FCs, pump frequency. Direct 

start/stop commands are generally overridden by local controllers, but 

frequency setting is supported. By monitoring a limited set of tags and 

adjusting only level limits and pump frequency, HLCS achieves non‑invasive 

fault detection and control for WWPS–WWTP systems.  
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4.5.2 Results 

The solution was implemented in the local historian (Node‑RED) and in 

Ignition, with two case studies addressing both simulation and real scenarios. 

Simulation was required to test conditions difficult to reproduce 

simultaneously in practice and to explore application limits without stressing 

critical infrastructure. The simulation scenario examines the WWPS–WWTP 

network under supplementary wastewater inflows at the WWTP inlet caused 

by storm water, reflecting real facility characteristics. The WWTP serves a city 

of ~13,000 inhabitants, with a maximum influent flow (30 min) of 98 m³. 

When this threshold is exceeded and the equalization basin is full, wastewater 

is diverted to the bypass channel untreated. The minimum influent volume 

(30 min) required for treatment is 17.5 m³, thus WWTP_inlet_min_flow was 

set to 49 m³. The simulated network includes three WWPSs without frequency 

converters. During testing, tag values were manually adjusted to trigger fault 

control, progressively extending from WWPS 1 to WWPS 3, followed by 

verification of gradual fault deactivation. 

The experiment begins as shown in Fig. 4.5‑3, with levels expressed in mm 

and WWTP_inlet_vol in m³. All events are logged via the Ignition Gateway to 

track system status. When WWTP_inlet_vol > WWTP_inlet_max_flow 

(Fig. 4.5‑4), the fault control procedure is triggered, automatically raising the 

hysteresis limits of WWPS 1. Subsequently, the wastewater level in WWPS 1 is 

manually increased so that L1 > L1_OFF_high. The algorithm then shifts the 

upstream station (WWPS 2) into a faulty state, likewise increasing its 

hysteresis limits (see Fig. 4.5‑5). 
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-L2_OFF_normal 
-L3_OFF_normal 
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Fig.  4.5-3 Screenshots presenting the starting point of the experiment. 
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Fig.  4.5-4 Entering fault control procedure and faulty state for WWPS 1. 
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 -L1 

 

 

- L2_ON_high 

- L2_OFF_high 

Fig.  4.5-5 Extending the fault control procedure to WWPS 2. 

The procedure continues until WWPS 3 enters a faulty state, resulting in all 

WWPSs being blocked. The WWTP inlet volume (30 min) then decreases below 

WWTP_inlet_min_flow. With L1 > L1_OFF_high, the hysteresis limits of 

WWPS 1 are reduced to initiate pumping. As shown in Figure 4.5‑6, when L1 < 

L1_OFF_normal and WWTP_inlet_vol ≤ WWTP_inlet_max_flow, the faulty 

state of WWPS 3 is deactivated, and its hysteresis limits return to normal 

operating values. 
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Fig.  4.5-6 Deactivating the faulty state for WWPS 3. 

By lowering wastewater levels and keeping WWTP_inlet_vol below the 

maximum threshold, all WWPSs progressively exit their faulty states. 

Two real WWPS experiments were conducted to demonstrate the capabilities 

of the non‑invasive HLCS and the benefits of interoperation. The tests involved 

two fault scenarios within the WWPS network (Fig. 4.5‑7). Wastewater 

collected by WWPSs 3 and 6 was pumped to WWPS 7 and then to WWPS 8. The 

fault conditions were artificially induced, and all actions remained non‑invasive 

with respect to local system operation. 

   
Fig.  4.5-7 WWPS network configuration. 
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Scenario 1 examines a clogged pipe fault at WWPS 6, detected by a high 

wastewater level. Prior to the experiment, WWPS 6 operated normally within 

the two‑positional hysteresis band (pump stop/start limits: 350–900 mm). The 

level evolution over a 4‑hour period (09:45–13:50) is shown in Fig. 4.5‑8. 

   
Fig.  4.5-8 WWPS 6 functioning on 17.06.2017 for 4 hours. 

The Scenario 1 tests were conducted on 17.06.2017 (Saturday), when water 

consumption remained relatively constant, with minor storm water inflows 

from light rain. Under these conditions, about four filling/emptying cycles per 

hour were observed (see Fig. 4.5‑8). WWPS 6, a first‑level wastewater 

collector, operates independently of upstream pumping failures. The fault was 

induced by lowering the pump start level limit in the HLCS (not locally). At 

16:30, the fault was detected, and the pump start/stop limits were raised to 

5000 mm and 4800 mm (see Table 4-10). The level limit set to 5000 mm is 

roughly the half of the station storing capacity. 

Table 4-10 Database view between 16:29:53 and 16:30:38 

Moment Level HighLimit LowLimit 

Sat Jun 17 2017 16:29:53 863 900 350 

Sat Jun 17 2017 16:30:08 878 900 350 

Sat Jun 17 2017 16:30:23 892 5000 4800 

Sat Jun 17 2017 16:30:38 908 5000 4800 

WWPS 6 remained in the fault control procedure for 2 hours 15 min., with the 

level reaching 3573 mm. An initial measurement error occurred, as the level 

rose abruptly from 950 mm to 3495 mm in 2 min. Thereafter, the increase was 

gradual, totaling only 70–80 mm. The level evolution during fault control is 

shown in Fig. 4.5‑9. At 18:46, the fault control procedure was deactivated, and 

the pump start/stop levels were restored to normal operating values. Table 4-11 

presents database values recorded at the moment of deactivation.  

After wastewater accumulation in the faulty scenario, WWPS 6 was emptied 

within 2 minutes. The experiment continued until 19:35, confirming that 

WWPS 6 returned to normal operation. The HLCS effectively detects and 

manages a clogged pipe failure, providing operators with approximately 
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48 hours for repair (under the 5000 mm level limit) without introducing 

additional issues in WWPS performance or unnecessary energy consumption. 

   
Fig.  4.5-9 WWPS 6 functioning on 17.06.2017 after failure detection. 

Table 4-11 Database view between 18:46:23 and 18:48:24 

Moment Level [mm] HighLimit [mm] LowLimit [mm] 

Sat Jun 17 2017 18:46:23 3573 5000 4800 

Sat Jun 17 2017 18:46:39 1190 900 350 

…    

Sat Jun 17 2017 18:48:24 351 900 350 

Scenario 2 examined a failure at WWPS 7 (e.g. emergency button or electrical 

fault). The station’s behavior is analyzed globally alongside other WWPSs 

(Fig. 4.5‑7). As a critical network point, WWPS 7 was operating normally, but 

its emergency button tag was artificially activated in the HLCS to trigger fault 

control. 

Prior to fault activation, all WWPSs functioned in normal regime for 23 minutes 

(20:37–21:00), with level evolutions shown in Fig. 4.5‑10. WWPS 7 averaged 

12 filling/emptying cycles per hour. The tests were conducted on 19.06.2017 

(Monday evening), during high water consumption. At 21:00, the failure was 

detected, and pump start/stop limits for WWPS 7 were raised to 5000 mm and 

4800 mm. The level evolution until 21:20 is presented in Fig.  4.5‑10. 

The failure at WWPS 7 was maintained between 21:00 and 22:00, during 

which the level rose to 1795 mm. Beyond 900 mm, the measurement error 

was smaller than in Scenario 1 (WWPS 6), though a brief, unjustified spike in 

level indication was still observed (Fig. 4.5‑10c). Throughout the fault control 

procedure, WWPSs 3 and 6 remained unaffected (Fig. 4.5‑11). 

Fig. 4.5‑12 illustrates the level evolution of WWPSs 7 and 8 before and after 

fault control deactivation. As shown in Fig. 4.5‑12a, approximately 10 minutes 

were required for WWPS 7 to resume a normal filling/emptying cycle following 

wastewater accumulation during fault control. 

During the fault control procedure at WWPS 7, with WWPSs 3 and 6 operating 

normally, the level rise rate stabilized after 2.5 minutes at approximately 
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600 mm/hour. Under these conditions, the non‑invasive solution provides the 

operator with about 6.3 hours to resolve the issue (based on a 5000 mm 

starting set‑point) without creating additional problems at WWPS 7 or 

adversely affecting other stations in the network. 

 

a) WWPS 3 level before and after the failure 

 

b) WWPS 6 level before and after the failure 

 

c) WWPS 7 level before and after the failure 

 

d) WWPS 8 level before and after the failure 

Fig.  4.5-10 WWPS 3, 6, 7, 8 before and after the failure. 

 

a) WWPS 3 level until failure deactivation 

 

b) WWPS 6 level until failure deactivation 

Fig.  4.5-11 WWPS 3, 6 until failure deactivation. 

 

a) WWPS7 level until and after failure deactivation 

 

b) WWPS8 level until and after failure deactivation 

Fig.  4.5-12 WWPS 7, 8 until and after failure deactivation. 
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4.6 Image-Processing-Based Low-Cost Fault Detection Solution for End-of-Line ECUs in 

Automotive Manufacturing. 

The current chapter presents data from [K-20]. In the automotive industry, 

Electronic Control Unit (ECU) manufacturing concludes with complex 

end‑of‑line (EoL) testing before delivery to clients. Within the Industry 4.0 

framework, efficiency gains require automatic visual inspection, integrated 

seamlessly into legacy production lines without interruptions. To align with 

Industry 5.0 principles, human involvement in decision‑making remains 

essential. This chapter introduces an image‑processing low‑cost fault detection 

(IP‑LC‑FD) solution for EoL ECUs, designed for high‑quality, rapid detection. 

The system targets defects such as incorrect pin mounting, missing or extra 

pins, damaged clips, and surface cracks. The IP‑LC‑FD system combines 

hardware and software: Raspberry Pi microcomputers, Pi cameras, and 

Python/OpenCV environments. The research progressed through two stages: 

development of an experimental model followed by a prototype. 

 

4.6.1 The Experimental Model 

The experimental model aimed to achieve a ≥95% fault detection rate with 

processing times under 7 s, ensuring integration into the production line. Cost 

reduction was prioritized, focusing first on hardware, then on software and 

maintenance. The major hardware expense was tele‑centric cameras, whose 

cost increases with object size. The first ECU analyzed measured 21 cm × 

18 cm, requiring the IP‑LC‑FD system to be positioned for easy operator 

handling. The hardware architecture (see Fig. 4.6‑1) was built around 

Raspberry Pi 3 boards and Pi cameras. A board‑camera ensemble costs over 

100×less than a tele‑centric camera, though Pi cameras introduce perspective 

distortion and Raspberry Pi boards have limited processing power compared 

to PCs with GPUs. The architecture comprised: 4 Raspberry Pi 3 boards (1 

master, 3 slaves); 4 V2 Pi cameras with 2× telephoto lenses, mounted 31 cm 

above the ECU (±0.5 cm error on vertical axis, I²C communication); Ethernet 

switch; Barcode scanner. 

Fig. 4.6‑2a shows the final positioning of the enclosures in the experimental 

model. The complete structure (Fig. 4.6‑2b) incorporates a uniform lighting 

system installed adjacent to the enclosures. From an image‑processing 

perspective, each ECU module was divided into four zones, each photographed 

by a camera–Raspberry Pi assembly. Due to the board’s dimensions, this 

division was necessary to properly manage perspective distortions and 

shadow effects. A switch integrated into the hardware architecture enabled 

parallel processing of the four image areas, increasing speed through both 
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parallelization and multithreading in the Raspberry Pi software. For software 

and maintenance costs, the system emphasized flexibility, adaptability, and 

modularity: Easy module replacement; Expandability to different ECU types; 

Capability to learn new configurations for existing ECUs; GUI‑based parameter 

configuration (lighting, area, search position, etc.); Operation without moving 

parts, reducing maintenance needs. Thus, the low‑cost image‑processing fault 

detection solution overcame hardware limitations while delivering 

performance comparable to, or better than, more expensive systems. 

   
Fig.  4.6-1 The hardware architecture of the IP-LC-FD experimental model. 

   

Fig.  4.6-2 The experimental model hardware of the IP-LC-FD. a) The disposal of the four Raspberry Pi - Pi camera 
ensembles. b) The final experimental model. 
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The experimental model enables fault detection on ECU boards at the EoL 

stage. Fig. 4.6‑3 illustrates examples of pins, connectors, clips, and cracks. 

The system tasks include: Detecting crooked, missing, or extra pins; 

Identifying misplaced or damaged clips; Detecting board cracks; Reporting 

and logging the inspection process; Collecting/marking faults and aggregating 

data on the master unit; Supporting user and board selection, debug 

procedures, and GUI‑based interaction; Managing existing configurations and 

learning new ECU configurations; Barcode reading; Data exchange among the 

four micro‑computers and communication with higher‑level traceability. 

 
Fig.  4.6-3 Some analyzed components on an ECU. 

The master node controls each slave, dictating tasks such as image capture, 

processing, and download preparation. Each slave serves only the master, 

with communication handled via Ethernet. Slave nodes implement servers, 

and data exchange uses Remote Procedure Call (RPC), a request–response 

protocol for process synchronization. RPC methods, registered on the server, 

may accept parameters in XML or JSON formats. During execution, the client 

remains blocked until completion, with an error‑catching mechanism for 

networking failures. RPC functions as a form of inter‑process communication 

(IPC) across distributed systems. Importantly, system modifications (e.g. 

adding modules or cameras) do not affect the server or RPC requests. 

The architecture (Fig. 4.6‑4) shows dark green RPC requests at the master, 

bidirectionally linked to slave servers. The Poller module manages incoming 

server requests. Color coding indicates: Beige‑white blocks: specialized 

modules unique to each node; Yellow blocks: distributed modules with similar 

functions; Green blocks: communication modules handling requests, 

prioritization, interpretation, keep‑alive connections, and command execution. 

The master node is the central element, providing command and control and 

serving as the sole communicator with other nodes. Its software components 

are shown in Fig. 4.6‑5, and the functional flowchart in Fig. 4.6‑6. 
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Fig.  4.6-4 The general architecture of the IP-LC-FD experimental model. 

   
Fig.  4.6-5 Software architecture of the Master node. 
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Fig.  4.6-6 The processing flowchart. 

In the software architecture, each slave node is organized into components 

based on functionality and interaction with other modules (see Fig. 4.6‑7). The 

foundation includes I/O drivers controlling peripherals and external libraries 

(.dll files for xmlrpclib, OpenCV2, and NumPy) that support higher‑level 

components. The two primary low‑level modules dependent on these libraries 

are Functionality and Server. The system is modular, with each of the 15 main 

modules having a defined scope and simple interconnections. Some modules 

include configuration files for calibration. Due to system scale and 

confidentiality, detailed descriptions remain limited. 

A key module is the Template Matcher, the functional core of the application. 

It employs OpenCV primitives and low‑level image processing techniques, 

operating directly on pixel color values to analyze input images. 

One of the module’s most complex methods addresses detection of the 

smallest ECU pins. It uses three input parameters: templ – a template image 

from the project file structure, used to locate matching zones in the source 

image; connector – the cropped image of a specific ECU connector; refs – a 

list of coordinates, previously processed by the Pattern Learning module, 

which selects positions via the user interface and returns them for 

optimization. The refs list ensures pins are detected within expected positions, 

allowing validation against a threshold zone. Invalid pins are added to a fault 
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list, later reported to higher application levels and visually marked with a red 

square in the interface. The module also includes a method for connector 

identification and a compare function, which extends the correct set of pin 

coordinates provided by the Pattern Learner. The compare method checks: 

Missing pins – when no detection occurs at expected coordinates; Extra pins 

– when detection occurs outside the defined set. Extra pin detection follows 

an inverse logic to basic detection, introducing significant complexity. 

   
Fig.  4.6-7 The processing flowchart. 

The Threads module manages all application threads, continuously monitoring 

resources during runtime to avoid delays. One key resource is memory 

availability for report storage. The system periodically diagnoses the report 

location, calculates byte usage, and displays the result as a status bar (0–

100%) on the user interface. 

The Pattern Learner module enables analysis of multiple ECU board types 

sharing the same mechanical structure. While the boards tested in the 

experimental phase had identical structures, their pin configurations defined 

distinct functional characteristics and circuits. In industry, reusing mechanical 

structures across ECU variants is common to reduce costs. Accordingly, the 

Pattern Learner exposes all connector pin configurations in a user interface 

window, allowing operators to add or remove pins as needed.  

The Base64 module encodes images into character arrays to simplify network 

transfer. Direct binary transmission may cause compatibility issues across 

operating systems or misinterpretation by certain protocols; encoding ensures 

all data is represented as ASCII text. The References module generates 

reference files for specific ECU types, supporting image processing by storing 

data on board elements and baseline captures for defect identification. Each 
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reference set (Fig. 4.6‑8a) is saved in a folder containing a template (.png) 

and a pins layout (.json) (Fig. 4.6‑8b).  

The PL Interpreter module translates Boolean values from the GUI into pin 

coordinates. Marked pins are validated (correct position, intact, not bent), 

while unmarked pins are checked to confirm no extras exist. Each connector’s 

pins are processed sequentially, producing a dictionary structure with 

connector names as keys and Boolean lists as values. This dictionary is stored 

in a JSON file as a reference resource (Fig. 4.6‑9). 

 
a)  

 
b)  

Fig.  4.6-8 References - a) file structure; b) saving procedure 

   
Fig.  4.6-9 Data saving model. 

From high‑level objects, values are extracted, grouped into a dictionary, and 

transmitted by the master node to the slaves. Once loaded into RAM, two 

functions apply filters to obtain pin coordinates (Fig. 4.6‑10). These 
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coordinates, stored as lists of tuples, serve as inputs for detection methods in 

the TemplateMatcher module. The Processing Tools module supports other 

detection modules with auxiliary methods. Though indirect, its impact on 

overall performance is significant. For example, rotation procedures are 

continuously applied, using straight angles to align camera positions or small 

angles (≤10°) to compensate for mechanical placement tolerances. Improper 

rotation can compromise cropping and lead to data loss. Cropping procedures 

are essential both for accurate detection and for reducing execution time.  

   
Fig.  4.6-10 Coordinates conversion process. 

 

4.6.2 The Prototype 

A new mechanical‑hardware structure was required to meet production line 

demands and ensure performance for basic ECU types. A prototype was 

designed, implemented, integrated, tested, and validated in the production 

line. Building on the experimental model, the prototype employed six 

Raspberry Pis and six physically separated cameras, improving inspection 

quality for connectors affected by perspective issues. The separation also 

enhanced surface luminosity during analysis. The first prototype used a 

circular mechanical surface with cameras magnetically attached (Fig. 4.6‑11). 

However, during initial experiments, operators frequently displaced cameras, 

disrupting detection and necessitating recalibration. To address this, the final 

design adopted a rectangular mechanical structure (Fig. 4.6‑12), allowing 

easily adjustable yet stable camera positioning. 

The system’s data transmission capability was expanded to support 1 master 

and up to 5 slaves, covering request/response exchanges, data aggregation, 

reporting, and concluding procedures. A generic platform was designed for n 

processing modules. In practice, the prototype includes two branches, one 
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master and one slave, with generic slave software applicable to any Raspberry 

Pi in the scheme. This modularity simplifies maintenance and replacement. 

The prototype was extended to operate across the main ECU classes in the 

production line. This required a new software module concept to accommodate 

differences in hardware‑mechanical structures and ensure adaptability. 

Modules were developed to incorporate layouts from all ECU classes and their 

specific board sets. The pin search module was further optimized through 

cropping techniques, reducing both the search area and processing time. 

 

  
Fig.  4.6-11 First phase of the IP-LC-FD prototype. 

New detection modules were developed based on “islands” identification, with 

islands separated or grouped to improve accuracy. A dynamic illumination 

threshold was introduced for each pin, addressing light and shadow variations 

in open environments. Since pins and pinholes are small, variable thresholds 

were essential for reliable detection. 

Layout management (saving, storing, loading) was optimized to handle the 

large number of layouts in production. Detection task optimization was 

achieved by having the master equipment extract and distribute connector 

lists to slaves, eliminating fixed assignments and allowing easy module 

replacement. Processing time was reduced by removing the need for 

connector rotation in slave software. Finally, a new layout learning module 



145 
 

was implemented exclusively on the master equipment, avoiding the need for 

ssh/vnc connections to individual slaves. 

  
Fig.  4.6-12 Final IP-LC-FD prototype. 

A new offset separation was implemented, assigning each pin its own search 

area. Additionally, a dedicated module calculates the filling factor for each 

pin’s offset. The prototype supports full configuration changes via the GUI and 

operates in complete integration with the company’s traceability software. 

 

4.6.3 Results 

Both the experimental model and the prototype were rigorously tested and 

validated according to their technological readiness level. For the experimental 

model, testing was conducted in the laboratory using the IP‑LC‑FD stand with 

~40 ECU boards from a single class. Different pin layouts allowed evaluation 

of multiple configurations. To simulate diverse scenarios, boards were 

deliberately modified (bent/broken pins, induced cracks, damaged clips). The 

stand itself was optimized to meet production line requirements, concluding 

that a 30 cm × 30 cm diffuse light surface should be mounted above, with 

Raspberry Pi and camera enclosures positioned ~5 cm below, and ECUs placed 

30.5 cm beneath the enclosures. 

The prototype was tested over 3 months in production, using more than 1000 

boards across four ECU classes with varied pin configurations. In the first 

scenario, the fault detection mechanism for bent pins was analyzed. The 
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algorithm consisted of capture the source image (Fig. 4.6‑13a), crop the 

connector region (Fig. 4.6‑13b), detect pin holes and pin positions, mark bent 

pins with red squares, correctly placed pins remained unmarked (Fig. 4.6‑13c). 

 a) 

 
b) 

 
c) 

Fig.  4.6-13 Results obtained with the IP-LC-FD system: a) the source image; b) the extracted connector; c) the 
faulted pins detection. 

The second scenario illustrates extra pin detection. Within the Pattern Learner 

Interpreter, all pins linked to a connector are unchecked (see Fig. 4.6‑14a). In 

this configuration, the algorithm identifies pins located in unmarked positions, 

while leaving empty holes unmarked. The results (see Fig. 4.6‑14b) show all 

detected extra pins highlighted in orange. 

 
a) 

 
b) 

Fig.  4.6-14 Results obtained with the IP-LC-FD system: a) the unmarked pins in the Pattern Learner module for a 
connector; b) the detected extra pins in the specified connector. 
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Table 4-12 summarizes additional testing results, while Fig. 4.6‑15 illustrates 

the user interface during a test in which an ECU board showed no faults and 

was declared Passed. 

   
Fig.  4.6-15 An overview of the user interface and a test result for no detected faults. 

Table 4-12 Test procedure implementation results 

Test procedure 
Success 

rate 

Testing the informational flow at the algorithm level (“fairness” concept). a) All 

module/function activation signals producing the expected outcome (e.g. image 

capturing on the master/slaves generates the image file, the EdgeDetection function 

always determines the corresponding execution, the ImageDifference executes always 

the correct code, etc.); b) correct transition between the states, no unknown state; c) the 

application is providing outputs and allows the transition to e new cycle both in 

normal and debug functioning regimes. 

100% 

Verifying the communications and the threads. a) The communication between the 

master and the slaves; b) The communication with the traceability application; c) 

Correct functioning of the local threads.   

100% 

Testing the local reporting module.  100% 

Testing the ability to learn new types of boards and the management of saved ECUs.  100% 
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Verifying the data aggregation and integration from all processing equipment, and the 

concluding manner. 
100% 

Testing the referencing procedure (references addition, adjustments, etc.) 100% 

Testing the correct connector detection and fault detection for small and large pins, 

clips, cracks.    
98% 

Testing the missing pins detection.  98% 

Testing the extra pins detection. 98% 

Capability Pass repeatability test – An good ECU is tested successfully 50 times in the 

industrial environment and 50 times the system provides the same result, Passed.   
100% 
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5 Efficient and Human Centered Industry 5.0 Data Propagation and 

Representation in the context of Technology Oriented Digital 

Transformation Interfacing 

The current chapter consists of information from three scientific works [K-1], 

[K-3], [K-4]. The goal was to increase efficiency of data propagation and 

representation in the context of digital transformation and Industry 5.0 

requirements. The solution had to target a high TRL, and to be technology 

driven and applicable in the current industrial context. Another objective was 

to bring the academic perspective closer to the industrial technology, to 

reduce the gap between the entities. Currently the academia is not really 

involved in the technology validation and fast spreading, this issue causing 

lots of unverified opinions and guidance to arise.    

Efficiency increase is the first objective that requires approaching digital 

transformation and applying IIoT and Industry 4.0 concepts. Digital 

transformation fundamentally relies on interfacing and connectivity. The 

challenges posed by legacy protocols and solutions at the OT level are now 

extending to the IT domain, where outdated legacy systems introduce an 

entirely different set of complexities. Industry 5.0 extends previous 

advancements by integrating a societal vision centered on human‑centric 

values, sustainability, and resilience, while maintaining the efficiency goals of 

Industry 4.0. At the OT level, data often lacks structure and context, which 

are typically provided by middleware bridging IT systems and higher SCADA 

layers. As hierarchy increases, technological expertise declines, leading to 

suboptimal process representations. Moreover, the existence of multiple 

SCADA solutions for the same industrial process generates inconsistent 

interpretations, higher costs, longer development timelines, and greater 

maintenance complexity. 

Section 5.1 is based on [K-3], and it is focusing on establishing a foundation 

for a single-source-of-truth (SSoT) human-oriented data representation in a 

context of a virtual unified space for digital transformation. The chosen 

transport protocol is Message Queue Telemetry Transport (MQTT) and data is 

transmitted in a structured and contextualized form using JSON and Sparkplug 

B. The physical objects from industrial processes contain graphic descriptors 

and defined templates that increase human perception, creative initiative and 

guiding capabilities, making him able to be in the center of decision making. 

The other two pillars of Industry 5.0, sustainability and resilience are also 

positively influenced by the improved representation and perception on all 

levels, including possibilities of decentralized decision making and AI guiding. 

The applicability of the solution can be both on the IT and OT levels, including 
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the cloud, and in process control independent applications. The section 

approaches the Ignition towards Node-RED data propagation. The Ignition 

environment is set to function in the MQTT and Sparkplug configuration, acting 

as a SCADA node. An external software application that can be placed on any 

hierarchical level is set to interface using MQTT, integrating a complete user-

defined data type template.      

Section 5.2 is based on [K-4] and it approaches the research regarding the 

OPC UA protocol that can proliferate structured data including graphical 

representation from the OT level towards other higher supervision levels. The 

approach considers both legacy systems and technological progress, assuring 

efficient and human centered structured, contextualized, and graphically 

sustained data propagation on the OT level. The builds upon industry adopted 

environments and devices placing Node-RED on the lower level, assumedly 

PLC level, respectively Ignition on the higher level as SCADA environment.       

Section 5.3 is based on [K-1] and it is closing the three-step research focusing 

on technology-driven data propagation and representation in the Industry 5.0 

context. The study provides a bidirectional and flexible propagation of 

structured and graphically represented data using Sparkplug B protocol, 

considering Node-RED and Ignition environments. The solution is applied and 

evaluated qualitatively and quantitatively, proving its efficiency. 

 

5.1 Targeting Broker Based Solution in the Context of Technology Driven Digital 

Transformation, from Ignition Sparkplug B to Node-RED. 

Industrial efficiency has advanced through systems adopting a common 

OT‑level language. Enabled by IIoT and Industry 4.0, many industries 

achieved open, interoperable, flexible, scalable, and high‑performance OT 

process control, monitoring, and supervision. However, the persistence of 

legacy systems with diverse protocols limits data quality and consistency, 

while multiple SCADA solutions across hierarchical levels hinder unified and 

reliable operation and maintenance. 

 

At the IT level, efforts focused on digital transformation, primarily through 

ERP implementations (financial modules, asset management). Yet 

interoperability remains constrained: systems rely on REST architectures, 

local relational databases without timestamps, and even isolated Excel files. 

The most impactful improvement came from cloud technologies, which 

facilitated adoption of lower‑level OSI protocols such as MQTT and AMQP, 

positively influencing IT integration. 
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The envisioned digital transformation that currently represents one of the 

most important topics associated with industrial revolution today [166-167] 

assumes first of all interoperability and OT-IT data integration [168]. For 

digital transformation, data must be structured, modeled, normalized, 

contextualized, and trusted. Key debates persist around protocol foundations, 

architectures, conversion/wrapping modules, truth sources, security, and 

implementation techniques. Current directions converge on publish–subscribe 

protocols and event‑driven architectures. The state of research, reflected in 

off‑the‑shelf solutions, will guide urgent trends. However, industrial legacy 

systems and the impact of existing products must be considered when defining 

architectures. Academic research, validation should be significantly expanded 

to position technologies impartially by value, impact, and future necessity.      

The primary objective of Industry 4.0 is to enhance efficiency, as highlighted 

in reviews of automation and supervision trends [169]. Efficiency 

improvement was regarded from various perspectives, as energy consumption 

reduction [170], as increasing production volumes and speed [171], as faster 

and better fault prediction [K-7], etc. Certain directions, such as enhancing 

functional safety, reducing the environmental footprint, or improving the 

quality of human work, are not direct objectives of Industry 4.0. These aspects 

may appear as secondary accomplishments but are not foreseen outputs of 

Industry 4.0. According to [172], European industry should reinterpret 

Industry 4.0 to include a societal perspective and transition toward 

Industry 5.0. Industry 5.0 builds on Industry 4.0 through three pillars [173]. 

[174] details a human‑centric resilient transition, defining three functioning 

modes: autonomous, parallel, and expert/emergency. Study [175] anticipates 

a greater share of virtual workers than humans and field robots, while arguing 

that humans must remain at the top of decision‑making. 

This chapter aims to address key objectives in light of the current industrial 

context, research status, and rapidly evolving scenarios: 

Goal 1: Establish a unitary view of process objects across all hierarchical 

levels, enhancing human vision and perception within the company and 

positioning them as central actors in decision‑making. 

Goal 2: Consolidate a Single Source of Truth (SSoT) through contextualized 

and distributed data, thereby increasing resiliency via improved access to 

structured and understandable information for operations, and supporting 

sustainability through human‑guided decentralized AI algorithms. 

Goal 3: Promote academic analysis of industrial developments, ensuring the 

establishment, evolution, and consolidation of chronologically validated 

technologies and solutions.   
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5.1.1 Industrial and Scientific Context 

OT systems continued to evolve, with increasingly decoupled solutions 

emerging. OPC UA, as the most representative Industry 4.0 protocol, 

introduced new specifications for Publish–Subscribe requirements, with 

scientific contributions such as paper [K‑19], which proposed a UDP 

broker‑based solution. However, companies have not yet mass‑produced 

equipment implementing the latest OPC UA specifications, with many devices 

still relying on the Client–Server paradigm. This slow adoption is also noted in 

[176]. A significant perspective is set by Siemens, which adopted MQTT as a 

transport protocol for its OPC UA devices (e.g. S7‑1500) to enable Publish–

Subscribe functionality. Furthermore, work [177] presents an OPC UA Publish–

Subscribe solution using MQTT for sensor networks, achieving high‑frequency, 

low‑latency message transmission, developed with the open62541 stack.   

Paper [178] addresses low‑cost, long‑range wireless sensor interfacing, 

showing that Sparkplug B with MQTT offers advantages over the legacy 

Modbus protocol. Work [179] proposes an architecture based on Sparkplug B 

and MQTT for a unified namespace, with data pushed directly from OT without 

applying the Purdue hierarchical model. Sparkplug B is only gradually entering 

the scientific literature, promoted mainly through successful off‑the‑shelf 

products from Inductive Automation and Cirrus Link. Sparkplug B provides 

several benefits, easy manipulation, plug‑and‑play, auto‑discovery, and low 

overhead, and is strongly supported by influential products such as Ignition, 

which offers versions for SCADA, Edge, and Cloud, and brokers like HiveMQ, 

enabling unified namespace setups in the context of MQTT and Sparkplug B. 

The protocol’s adoption is highly dependent on the success of the Ignition 

environment, and digital transformation based on Sparkplug B is difficult to 

envision without it. Ignition is among the most flexible and open SCADA 

environments, though additional solutions are needed to fully exploit its 

potential. Compared with IGSS SCADA from Schneider Electric, Ignition does 

not natively structure data into objects and atoms, and templates are less 

easily conceived. However, with further software development, user‑defined 

data types (UDTs) can diversify and extend perspectives. 

A major advantage of a human‑centric Industry 5.0 system would be to 

provide unitary graphical representations across all user levels. Moreover, 

Sparkplug B could be further exploited to achieve capabilities equivalent to 

OPC UA Alarms & Conditions (A&C), as implemented in Siemens products. The 

overarching goals are to research and develop bridging solutions between 

industry‑driven environments and protocols, highlighting the strengths of 
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widespread technologies, and to provide additional capabilities that enhance 

independence, flexibility, scalability, and operational efficiency. 

Digital transformation introduces the Smart SCADA concept (e.g., Xylem Vue), 

positioned above legacy SCADA systems to manage OT‑level supervision while 

enabling OT–IT convergence. Other companies employ the Node‑RED 

environment to integrate lower‑level SCADA and provide higher‑level 

supervision and intelligence (e.g., [K‑8] in automotive manufacturing building 

management). At the IT level, which plays a critical role in digital 

transformation [180], interfacing differs substantially from OT. Common 

practices include REST and SOAP APIs, though many IT solutions remain 

isolated silos, with direct database access and Excel‑based imports still 

prevalent. Some technologies now provide MQTT links. Meanwhile, ERP 

systems, increasingly complex due to digitalization requirements [181], face 

challenges in integration with OT, often requiring data lakes, warehouses, and 

business intelligence dashboards [182]. 

The OT–IT convergence is regarded as the most essential step in digital 

transformation. An SSoT ensuring common knowledge and structured context 

across all data remains insufficiently addressed in academic literature, as 

noted in [183] regarding the unified namespace. Practice‑oriented 

researchers, however, present the unified namespace as a key enabler. In 

[183], authors propose integrating the unified namespace with ISA‑95 

architecture via asset‑administration shells for data interpretation and 

wrapping. Work [176] provides an overview of a unified namespace‑based 

event‑driven architecture for smart shop floors, discussing protocols and 

open‑source tools. The unified namespace using MQTT is further explored in 

[184], applied to printed‑circuit‑board surface‑mount technology systems 

within the Industry 4.0 context. 

 

5.1.2 General Architecture and Solution Development 

The proposed solution employs a two‑step approach: first, SCADA‑level data 

processing prior to publication; second, subscriber/client‑level processing to 

ensure integration and visualization. It defines a publish–subscribe 

event‑driven architecture (EDA) with decoupled entities, aligned with the 

unified virtual space/unified namespace concept, and extends the SSoT 

principle through graphical representation of process objects and associated 

data values. In industrial practice, particularly within the Purdue model, the 

upper OT level is represented by SCADA control centers. Modern SCADA 

systems increasingly employ user‑defined data types (UDTs), with some 

environments integrating UDTs into graphical templates. The Ignition 
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environment enables the creation of structured instances combining 

UDT‑based data with graphical descriptors, supporting advanced 

contextualization and visualization.  

Data from structured instances are published via the Sparkplug B and MQTT 

protocol ensemble, transmitted through an MQTT broker within a unified 

virtual space. In this architecture, subscribers can access the published data 

according to the framework presented in Fig.  5.1-1. Within the Node‑RED, 

subscribers can access data via an EDA without polling, providing human 

operators with enhanced graphical representations of technological process 

values. The resulting template instances are perceived in a unitary manner 

across the enterprise, ensuring consistency in visualization and interpretation. 

 

Fig.  5.1-1 Solution architecture considering MQTT Sparkplug B as UDT generator  

The two‑step methodology outlined above is designed to implement the 

workflow of data management as described within Fig.  5.1-2. The workflow 

integrates Ignition for structured data modeling and processing, preparing 

information for publication via an MQTT broker, and Node‑RED for real‑time 

processing and visualization. This approach ensures efficient data acquisition, 

transformation, and dissemination within an EDA based on Sparkplug B with 

decoupled entities. In the initial phase, Ignition builds the data structure by 
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defining and instantiating a UDT, subsequently linked to a graphical template. 

The UDT encapsulates key process attributes along with an additional variable 

that stores the template, combining structural elements (layout, dimensions, 

hierarchy) and behavioral elements (tag bindings, real‑time values, 

interactivity). This variable enables external processing and visualization. 

The next phase involves data extraction and serialization into JSON, chosen 

for its flexibility and ease of transmission via MQTT. Extraction is performed 

through event‑based scripts, ensuring updates propagate only when changes 

occur. Scripts systematically traverse the template hierarchy, retrieving all 

relevant properties while preserving relationships among nested elements. A 

recursive approach guarantees proper representation of group structures in 

the final dataset. Additional steps include recalculating bounding boxes for 

ShapeGroup elements, since aggregate dimensions are not inherently stored. 

By analyzing subcomponent coordinates, the recalculation preserves the 

visual hierarchy. Specialized mechanisms address component‑specific 

properties, such as multi‑state behaviors in toggles or buttons, and color 

gradient interpolation for shape‑based graphics. 

 

Fig.  5.1-2 Functional diagram  

The final extracted dataset comprises both static and dynamic properties. 

Static attributes include absolute and relative positions, dimensions, 

background and foreground colors, and font properties. These define the 

structural characteristics of elements and are essential for accurate visual 

representation. Dynamic attributes capture data‑driven elements such as 

real‑time values from tag bindings, component states, and specific object 

behaviors. Together, they establish a direct link between visualization and the 

functional layer of the monitored process, ensuring operational accuracy. 
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The extracted data is serialized into a hierarchical JSON format, fully compliant 

with Sparkplug B specifications. This compliance guarantees semantic 

compatibility with industrial automation frameworks and enables seamless 

integration into subsequent processing workflows. An element resulting from 

serialization, containing both visual and behavioral properties, is highlighted 

in Fig.  5.1-3. Structured data include both the static properties together with 

the behavioral ones. 

 

Fig.  5.1-3 JSON structure containing behavior properties 

At the next stage, the JSON object is published into an MQTT tag within 

Ignition. During data distribution, the MQTT broker serves as the intermediary 

between Ignition and the final consumer, represented by Node‑RED. Within 

the MQTT transmitter, correct metric encoding is essential. Ignition 

Sparkplug B introduces a birth certificate message upon initial publication, 

registering the UDT template instance as the active data source. The 

Node‑RED consumer detects the availability of new data. Messages are 

structured into distinct metrics, including timestamps, element names and 

types, real‑time tag values, and metadata, enabling the consumer to 

reconstruct historical data, track system changes, and maintain updates. In 

cases of failure or removal, a death certificate message is transmitted, 

signaling the consumer that the data source is no longer valid. This 

mechanism ensures continuous awareness of data validity, preventing 

reliance on outdated information. 

The second step involves the Node‑RED client as the final consumer. Once the 

MQTT broker distributes the JSON payload, Node‑RED parses the data, 

extracts relevant metrics, and prepares them for real‑time visualization. 

Message structures received contain both visualization data and updated tag 

values, highlighted within Fig.  5.1-4 and Fig.  5.1-5. Each metric corresponds 

to a specific attribute of the UDT instance. 
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At this stage, Node‑RED searches for updated tags within the UDT instance to 

synchronize with real‑time data and apply graphical representation updates.  

 

Fig.  5.1-4 JSON structure in Node-RED for key attribute 

 

Fig.  5.1-5 JSON structure in Node-RED for visualization data 
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The consumer identifies the relevant UDT instance via its unique identifier and 

modifies the associated tag values. Once synchronization is complete, the 

dataset is restructured into a new JSON payload, which serves as the 

foundation for interface construction. The interface is constructed using an 

SVG‑based approach, dynamically generating UI components from the JSON 

payload. Each visual property is mapped onto the SVG canvas with precise 

positioning to ensure consistency. Path‑based shapes are grouped within their 

parent containers, preserving hierarchical structure. All components are 

continuously updated in response to real‑time data changes, maintaining a 

live connection to the underlying system state. 

 

5.1.3 Case Study and Results 

The solution was validated through a case study involving two main entities: 

the publisher and the subscriber, connected via an MQTT broker. The publisher 

is an Ignition SCADA (Vision), which communicates with the lower PLC layer 

using OPC UA. For testing, the environment employed a KepserverEx OPC UA 

server. Ignition transmits structured data to the Chariot MQTT broker using 

Sparkplug B over MQTT. The subscriber is a Node‑RED application, which 

receives and processes the data, converting it into JSON format. The overall 

case study architecture is represented in Fig.  5.1-6. 

 

Fig.  5.1-6 Case study architecture 

The scenario illustrates motor supervision. Unstructured data reaches the 

SCADA level, where it is structured in Ignition using a UDT that defines 

attributes such as temperature, speed (with units), motor state, motor 

control, and faults. Motor states are represented by five values (word 0–4), 
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set according to the PLC algorithm and varying with motor speed. Fault 

detection considers three conditions (over‑temperature, over‑current, and 

leakage) identified through bit‑wise analysis of the three least significant bits 

of the incoming word tag. Template graphics are linked to UDT in Ignition. A 

motor descriptor from the Symbol Factory is configured to bind with the motor 

state tag, changing color according to speed (e.g. yellow for 1500–2500 rpm, 

orange for 2500–300 rpm). Two LED displays are bound to the UDT’s 

temperature and speed properties, while a start‑stop button (linked to the 

least significant bit of the OPC UA tag) and a label are added. 

UDT template instances were created, and a Jython scripting solution was 

applied to publish structured data, including template graphics and bindings, 

stored as a string attribute of the UDT. Data was transmitted via the broker, 

then extracted, processed, and represented in Node‑RED, with updates 

reflected in the Node‑RED Dashboard, closely mirroring the Ignition Window. 

Multiple tests across various local tag values validated the approach. The 

paper presents two scenarios, with the initial configuration showing three 

motor instances, each with distinct data values, as depicted in Fig.  5.1-7 and 

Fig.  5.1-8. Fig.  5.1-9 and Fig.  5.1-10 illustrate the resulted dashboard in 

Node-RED, showing correct, structured and complete data representation 

(e.g. the state colors of motor 1 is yellow while the speed is 2000 rpm). 

 

 

Fig.  5.1-7 Three motor UDT template instances in 
function in Ignition Window – scenario 1 

 

Fig.  5.1-8 Three motor UDT template instances in 
function in Ignition Window – scenario 2 
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Fig.  5.1-9 The three UDT template instances shown 
automatically in Node-RED – scenario 1 

 

Fig.  5.1-10 The three UDT template instances shown 
automatically in Node-RED – scenario 2 

 

 

5.2 Data Propagation on the Operational Technology Level Based on OPC UA 

Interfacing, within a Case Study Using Node-RED and Ignition. 

Considering both legacy systems and technological progress, the section 

proposes a solution that assures efficient and human centered structured, 

contextualized, and graphically sustained data propagation on the OT level. 

This work builds upon industry‑adopted environments and protocols to ensure 

rapid adoption and broad impact. A Node‑RED and Ignition case study 

demonstrates PLC–SCADA data integration, with structured and graphically 

represented data transfer via OPC UA, yielding positive results without 

requiring additional SCADA‑level developments.  

With the Purdue model dominating the OT level, newer architectures 

sometimes side‑push SCADA systems [185] through direct PLC data transfers. 

Security concerns and protocol‑related advantages often position SCADA as a 

pass‑through layer for vertical data movement. Emerging unified virtual 

space/unified namespace architectures [186] also incorporate SCADA levels, 

typically local HMIs and supervisory systems, but rely on decoupled entities 

and middleware. In some cases, isolating the PLC level leads to local HMIs 

functioning as pass‑through SCADA structures. Across architectures, data 

structuring, quality, adaptability, and human‑centricity must be prioritized. A 



161 
 

bottom‑up approach to structuring data enhances higher‑layer integration, 

enabling improved usage, comprehension, and sustainable AI deployments at 

edge/fog levels. When data structures include graphical representations of 

protocol‑interfaced entities, all consumers, including human operators, gain a 

unitary perception of process entities. Since control strategies and 

representations developed at the PLC level are closest to the technological 

process, they provide the most meaningful insights. 

Cost considerations remain critical. Implementing multiple SCADA solutions 

across hierarchical levels often duplicates process and control structures, 

leading not only to development costs but also to licensing and maintenance 

expenses, particularly for local automation panel HMIs. Additional software 

layers within HMIs may reduce reliability, availability, and security, especially 

when upgrades are required. An essential aspect of the current digital 

transformation trend is the choice between off‑the‑shelf products proven 

competitive and flexible [187], or high‑TRL solutions capable of rapid 

implementation. Legacy OT systems have long lifecycles, and changes involve 

significant costs following detailed cost–benefit analyses. Conversely, the cost 

of waiting can also be substantial in the context of Industry 4.0 and 5.0 

requirements, which limit protocol improvements or redefinition of software 

environments [188]. Academic research must therefore evaluate whether full 

reinvention of protocols and environments is necessary, or if add‑on 

improvements to existing developments are sufficient. Within this context, a 

foreseen human‑centered Industry 5.0 solution aims to ensure: Structured, 

contextualized, and graphically represented data propagation at the OT level; 

Fast deployment by leveraging existing industrial technologies and 

equipment; Large impact through reliance on key industrial protocol concepts; 

Efficiency in time, cost, and processing for SCADA development, maintenance, 

and data manipulation. 

 

5.2.1 Actual Status of Literature and Industry 

The OPC UA protocol was the key enabler of Industry 4.0 and IIoT [189–190], 

succeeding the influential OPC Classic, which, through centralized servers, 

opened industrial connectivity for major producers and new enterprises. 

Transitioning to OPC UA at the OT level has faced persistent challenges due to 

the inertia of legacy systems and older products [188]. While Modbus TCP, 

Profinet, Ethernet/IP, and other Ethernet‑based protocols remain consolidated 

at PLC levels, lower automation layers still rely on serial Modbus, Profibus, 

Mewtocol, Canopen, etc. Despite this, OPC UA has become the widespread 

IIoT interface in manufacturing and other industries, with numerous wrappers 
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developed. It is now present on most PLCs, where equipment typically follows 

basic client–server specifications with fixed structuring. 

At the OT–IT convergence, the Unified Namespace concept [183] emerged, 

often broker‑based with MQTT and Sparkplug B packing, promoted by 

industrial products such as Ignition from Inductive Automation. Ignition 

gained broad adoption in industries using OPC UA, valued for its namespace, 

address space, stability, and security, while Sparkplug B achieved popularity 

in specific domains. In [191], process data is transmitted via MQTT, packed 

in Sparkplug B, and visualized through Node‑RED and Ignition. Although 

OPC UA has advanced with publish–subscribe specifications, few industrial 

solutions implement full end‑to‑end OPC UA publish–subscribe systems. Work 

[192] demonstrates such an approach, using MQTT for wireless sensor 

networks within the industrial Internet.   

Sparkplug B is not a widely adopted protocol. Some issues were discussed and 

need to be solved: Birth‑storms occurrence when the main client/subscriber 

disconnects, forcing all publishers to resend birth certificates, which can 

overwhelm the network; Data loss risks if the primary client crashes, as 

publishers stop transmitting under the store‑and‑forward mechanism, with 

quality of service remaining limited; Integration challenges exist for products 

not specifically designed for the protocol, and auto‑discovery of complex data 

structures is difficult; UDTs are transferred entirely from publisher to 

subscriber, with no intrinsic selection capability; the rigid topic structure lacks 

the flexibility and address space of OPC UA; Data contextualization is 

constrained, limited to a few levels and largely dictated by the publisher. 

Interfacing research and development requirements have shifted the PLC‑level 

perspective. Phoenix Contact integrated MQTT, Sparkplug B, and OPC UA into 

PLCnext technology, while current PLC equipment benefits from enhanced 

interfacing through Node‑RED and Codesys. Companies such as Siemens and 

Kunbus provide solutions (via IoT2000 series gateways for protocol conversion 

and wrapping [K‑31], and Revolution Pi PLCs) capable of complex interfacing, 

data structuring, and representation. These newer devices, whether PLCs or 

gateways for legacy systems, often embed Node‑RED, which research 

highlights as a PLC interfacing solution [193–194]. Beyond interfacing, 

Node‑RED can support complete control strategies, including data structuring 

and contextualization within the PLC. Node‑RED also enables graphical 

representation of processes and components [195], [K‑1], a capability critical 

for Industry 5.0, emphasizing efficiency, human‑centricity, sustainability, and 

resilience. Traditionally, automation/SCADA setups involve local panels with a 

PLC and HMI, requiring licensing, proprietary development environments, and 
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additional tasks. Higher SCADA levels in OT introduce further HMI 

requirements and OPC UA interfacing, often with multiple HMI/SCADA systems 

(e.g. [196] shows additional equipment efficiency supervision in Ignition 

SCADA). These systems typically lack unitary structuring and 

contextualization, while incurring separate licensing, development, and 

maintenance costs. Industrial practice and research trends highlight the need 

for impactful solutions. Leveraging Ignition SCADA’s effectiveness and 

Node‑RED’s PLC‑level capabilities offer benefits: implementing process 

control, data structuring/contextualization, supervision strategies directly at 

the PLC level, while propagating structured data and graphical representations 

to SCADA via OPC UA, without requiring supplementary SCADA development.      

 

5.2.2 Proposed Solution 

The proposed solution primarily targets the OT level, while ensuring that 

structured and contextualized data also reaches the IT level. Structured 

instances and attributes are generated at the PLC level in Node‑RED and 

encapsulated within the OPC UA protocol. On the OPC UA client side, 

represented by Ignition SCADA, the data is accessed and visualized through 

the corresponding processing module. The targeted OT architecture (Fig.  

5.2-1) assures control the local process at the PLC level, which is approached 

in two ways (modern PLCs supporting IIoT environments such as Node‑RED 

with data packed in OPC UA, or legacy PLCs with gateways/wrappers). 

 

Fig.  5.2-1 System architecture on the OT level 
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At the SCADA level, the OPC UA server provides access to structured instances 

within the address space. Processing modules in Ignition retrieve these 

instances and depict the complete structure, including graphical 

representations, without requiring additional synoptic scheme development. 

Other HMIs, whether based on Ignition or Node‑RED, can interface and 

subscribe to the exposed instances via OPC UA with minimal effort, or 

alternatively access the full Node‑RED dashboard through a local browser. 

The solution follows a two‑step approach, with the implemented data workflow 

presented in Fig.  5.2-2, integrating Node-RED and Ignition through OPC UA.  

 

Fig.  5.2-2 System architecture on the OT level 

The first step involves defining the data structure in Node‑RED, which 

communicates directly with field devices, polling data and publishing it to the 

OPC UA server. Node‑RED also functions as an independent dashboard, 

offering live monitoring of process variables through built‑in web visualization 

tools without additional software. In the initial phase, data is organized into 

logical groups before publication. The processed dataset encapsulates both 

behavioral parameters (real‑time values) and structural parameters (graphical 

representations, location, dimensions), categorized numerically for 
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standardized OPC UA integration. Visualization employs SVG elements to 

represent monitored components. This approach enables dynamic updates by 

embedding color‑coded attributes linked to behavioral data, reflecting 

real‑time status. SVG’s XML foundation ensures flexible manipulation while 

preserving hierarchical structure, position, size, color attributes, eliminating 

the need to redraw components during updates. The final dataset is integrated 

into the OPC UA framework, which offers features absent in Sparkplug B, such 

as address‑space subscriptions, flexible structures, methods, robustness, and 

protocol‑level security (encryption and authentication).  

The second step is represented by the Ignition client, acting as consumer and 

visualization engine. Structured data received via OPC UA is transformed into 

a dynamic user interface through two complementary functions: 

- Automatic creation of UDTs, organizing process parameters in a 

standardized, scalable manner. 

- Independent UI rendering, querying structured data to generate 

components, allowing modifications without altering the structure. 

UDTs are created dynamically by detecting available server nodes and 

retrieving their values. Each UDT represents a specific component, grouping 

tags rather than treating them individually. This automatic process ensures 

continuous updates when new data is added, providing a scalable and adaptive 

system. Once instantiated, a UDT structure is highlighted in Fig.  5.2-3. 

 

Fig.  5.2-3 UDT Instance 

At this stage, the user interface is dynamically generated once a window 

component is provided. The automatic process follows two steps: first, the 

complete UDT structure is retrieved and its components separated into 

numeric values, operational states, and graphical elements; second, these 

components are created and placed within the UI. Existing elements are only 

updated rather than rebuilt. During UI creation, parameters are iterated and 

type‑verified. Numeric values trigger automatic generation of text fields with 

real‑time display and measurement units. States are represented by 

multi‑state display elements, with text and color linked to the corresponding 

state. Labels and descriptors are also dynamically created to provide 

contextual information. The use of SVGs enables dynamic generation of 

graphical elements representing physical components. Their hierarchical, 
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self‑contained structure eliminates the need for additional rendering 

techniques, while properties such as position, size, color can be modified. 

 

5.2.3 Case Study and Results for Node-RED to Ignition Data Propagation using OPC UA 

The case study is based on a PLC‑level Node‑RED development that exposes 

structured data through the OPC UA server, and a SCADA‑level Ignition 

implementation that accesses these structured instances via its embedded 

OPC UA client. Ignition then automatically deploys the selected data and its 

graphical representation within the SCADA diagram. The Node‑RED to Ignition 

data flow architecture is illustrated in Fig.  5.2-4. Both PLC level approaches 

can be observed, with the newer PLCs embodying Node-RED, and also legacy 

PLCs with legacy protocols augmented with the gateway/wrapper equipment. 

 

Fig.  5.2-4 Case study Node-RED to Ignition OPC UA data flow architecture 

The case study examines a control valve within a technological process. The 

valve operates in five states: open, closed, opening, closing, and faulted. It 

provides also the degree of opening, expressed in percentage units (%). These 

attributes are organized into a structured dataset. In addition to values and 

contextual data, Node‑RED integrates a graphical template for the valve. The 

template displays the valve’s current state name and degree of opening with 

units, alongside an associated image. Color coding indicates the state (e.g. 

green = open, grey = closed). 

Tests confirm that valve instances generated at the PLC level are successfully 

integrated and represented within the SCADA application. Fig.  5.2-5 

illustrates the local Node‑RED scenario, where the valve transitions from the 

open state to the closed state, subsequently entering the fault state. Fig.  
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5.2-5 a)-d) are showing the template instance on the Node-RED dashboard in 

all states.    

The instance is integrated into SCADA through a drag‑and‑drop process after 

accessing the OPC UA server. Data is then automatically propagated and 

graphically represented, flowing from the Node‑RED PLC level to the Ignition 

SCADA level. The results associated to the scenario from Fig.  5.2-5 are 

presented in the Ignition window in Fig.  5.2-6. Fig.  5.2-6 a)-d) illustrate the 

instance template propagation within the Ignition window, depicting the 

valve’s transition from open to closed, and subsequently to the fault state    

From Fig.  5.2-5 and Fig.  5.2-6, the structured data and its graphical template 

are correctly imported from Node‑RED into Ignition, updating dynamically 

according to the local valve behavior.  

 
a) 

 
b) 

 
c) 

 

 
d) 

 

Fig.  5.2-5 Valve template instance representation in the Node-RED dashboard - a) open, b) closing, c) close, d) 
faulted. 

 
a) 
 

 
b) 
 

 

 
c) 

 
d) 

 

Fig.  5.2-6 Valve template instance representation in the Ignition window - a) open, b) closing, c) close, d) faulted. 
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5.3 Solving and Completing Structured Bidirectional Data Propagation and 

Representation in the Sparkplug B context, using Ignition and Node-RED. 

Digital transformation, like other strategic concepts, advances through 

incremental steps toward defined objectives, though the extent of 

achievement and precision of vision remain variable. To align with Industry 

4.0 and 5.0 paradigms [197], research must emphasize efficiency gains 

alongside human-centered, sustainable, and resilient solutions. Since data 

constitutes the foundation of digital transformation, its propagation across 

hierarchical layers, spanning OT and IT, is critical. Each level presents distinct 

requirements in terms of protocols and information availability, with OT 

systems often subject to stricter security measures. 

Rapid deployment and adoption in this context call for high-TRL, off-the-shelf 

environments as research infrastructure. Designing robust architectures and 

enhancing data interfacing and representation provide significant advantages. 

Within this framework, Ignition [191] and Node-RED [196] exemplify flexible 

platforms that support IIoT/IoT-driven digital transformation. Both 

environments integrate modern standards such as Sparkplug B and OPC UA, 

enabling scalable and interoperable solutions. 

Broker-based EDA, emphasizing decoupled entities, increasingly dominate 

strategies for single-source-of-truth (SSoT) approaches within Unified Virtual 

Space (UVS) or Unified Namespace (UNS). With limited academic 

involvement, most architectural evolution is driven by industry, often leading 

to flawed comparisons between protocols such as MQTT and OPC UA. 

Industrial practice highlights that MQTT payloads require higher-level 

structuring through protocols like Sparkplug B or OPC UA [198], and certain 

sectors demand distributed architectures with multiple UNSs. 

The research addresses efficiency and Industry 5.0 objectives by ensuring 

data is structured, contextualized, trusted, visually enriched, and propagated 

across hierarchical levels. Template-based instances provide unified 

perspectives of technological processes, enhancing human involvement in 

decision-making and enabling decentralized AI under human guidance. 

Structured SSoT data availability also strengthens resiliency and sustainability 

by improving operational insight and maintenance interventions. Academic 

validation remains essential to consolidate technologies, establish proper 

timelines, and mitigate risks of proprietary dependence. The current third 

stage of the research delivers a comprehensive Sparkplug B/MQTT solution, 

enabling bidirectional, flexible, and contextualized data propagation across all 

levels. Templates generated in Node-RED or Ignition are distributed to 

consumers, who may also act as publishers, ensuring updated structures are 
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re-propagated. With built-in monitoring for traceability and security, the 

solution supports transition toward digital passports for process components 

while reducing SCADA development, maintenance, and HMI-related costs. 

Legacy systems remain a significant challenge at the OT level. However, over 

time, research and industrial development have established OPC UA as the 

dominant protocol. This transition was neither smooth nor spontaneous, 

requiring strong industry support alongside academic studies and 

endorsements. Once its advantages were recognized, adoption accelerated 

rapidly, resulting in widespread deployment of client–server OPC UA systems. 

Although newer OPC UA publish–subscribe specifications have been developed 

and studied, their integration into industrial devices has been slow. Instead, 

industry trends increasingly favor Sparkplug B, driven by SCADA-level 

implementations. OPC UA traditionally addressed higher OSI layers, extending 

its publish–subscribe mechanisms to the transport layer via MQTT or UDP. In 

contrast, Sparkplug B was designed from the outset around MQTT, promoting 

a decoupled entity architecture. MQTT itself has gained dominance across IT-

level applications—both cloud-based and on-premises—despite persistent 

legacy challenges [199]. It has also penetrated lower-level OT equipment such 

as meters and transducers, and is strongly endorsed by leading companies as 

a foundation for digital transformation. Literature consistently identifies MQTT 

as one of the most advantageous technologies due to its simplicity, lightweight 

design, and efficiency in constrained environments [200]. 

While protocol specifications continue to evolve, their practical impact depends 

on full adoption within industrial products. Theoretical standards alone, even 

when supported by SDKs such as open62541, remain insufficient without 

commercial implementation. Current digital transformation efforts rely heavily 

on off-the-shelf solutions, yet without academic validation and improvement, 

progress is largely steered by industry influencers and existing systems. The 

scarcity of research addressing a common language between OT and IT 

exacerbates this issue, leaving product-owning companies to dictate directions 

for manufacturing and related sectors. Consequently, the landscape remains 

fragmented, with urgent demand for rapid deployment of digital 

transformation modules. 

Although Sparkplug B requires integration with Ignition to enable 

straightforward UDT manipulation, Node-RED has emerged as a powerful IoT 

environment bridging both OT and IT domains. With extensive interfacing and 

data-handling capabilities, Node-RED plays a central role in digital 

transformation. It is increasingly embedded in gateway products and PLCs, 

while industries and developers rapidly expand its applications. By promoting 
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openness and avoiding proprietary lock-ins, Node-RED enhances 

independence, resilience, sustainability, and human-centered system design. 

Within this context, UNS/UVS concept is critical to SSoT architectures. 

Positioned at the OT–IT convergence, UNS/UVS provides structured and 

contextualized data for all consumers. High-TRL implementations typically rely 

on MQTT brokers, requiring higher-level protocols to enrich raw payloads. 

Sparkplug B combined with MQTT represents one of the dominant UNS 

architectures, transmitting OT data independently of Purdue hierarchies. 

Proper structuring of MQTT remains essential for interoperability, with 

Sparkplug B offering a technology-oriented solution.  

Beyond OT–IT convergence, UNS/UVS supports Industry 5.0 pillars of human 

centricity, sustainability, and resilience. Graphical representations linked to 

contextualized data enhance human centricity, providing unified process 

knowledge and empowering personnel without requiring direct manipulation 

of low-level infrastructure. Efficiency is achieved through reduced hardware, 

licensing, and development costs, coupled with instant access to complete 

process data. Openness and flexibility, ensured by environments such as 

Node-RED, allow continuous evolution and bidirectional updates of tag values 

and graphical interfaces. Such capabilities, whether implemented in Node-RED 

or Ignition, represent novel contributions not yet fully explored in the 

literature. 

 

5.3.1 Solution Overview 

The proposed solution employs an event-driven architecture built on 

decoupled entities. At its core lies a UVS/UNS implemented through MQTT and 

Sparkplug B, functioning as the SSoT. Within this framework, data are 

structured and contextualized, ensuring consistency across all system 

components. The shared information encompasses both functional attributes 

and graphical representations of technological process objects, enabling 

comprehensive interoperability and visualization. 

As illustrated in Fig. 5.3-1, the architecture relies on a UVS/UNS core, where 

standardized data exchange is enabled through the Sparkplug B protocol. 

Edge-generated UDT instances, structured, contextualized, and graphically 

represented, can be modified by authorized data producers and consumers, 

with auditing procedures serving as initial steps toward digital passport 

implementation. This design supports lightweight, event-driven, flexible, and 

scalable information exchange across heterogeneous components. 
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Fig.  5.3-1 System architecture 

At the OT layer, programmable logic controllers (PLCs) serve as the primary 

components, either operating with Node-RED as middleware or functioning 

directly as programmable environments (e.g. Phoenix Contact PLC, Revolution 

Pi). This layer generates event-driven structured data and attributes, which 

are routed into the UVS/UNS. Through Sparkplug B abstraction, contextual 

information and real-time values are standardized regardless of source. Node-

RED thus acts as an OT-level force for UDT structuring and graphical 

dashboard generation, while also functioning as an IT-level data consumer or 

an OT-level SCADA entity, with capabilities to publish or modify data when 

required. 

Ignition is typically regarded as an OT SCADA-level component, though it is 

increasingly deployed at the PLC level (e.g., Groov Epic) and within IT 

environments [196]. It interacts with the UVS/UNS to read and write data, 

supporting both process control and dashboard construction. Functional 

information (e.g. dynamic process variables) and structural information (e.g. 

UI definitions) are integrated as JSON objects, enabling dynamic modification 

or creation of payloads for flexible dashboard reconfiguration without 

disrupting process integrity. In parallel, Node-RED deployments build 
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dashboards and manage control tasks. Both Ignition and Node-RED operate 

concurrently, replicating functionalities and subscribing to a unified 

namespace. As a result, updates to process parameters and user interfaces 

are consistently propagated, ensuring synchronized and current system views 

across all components. 

The implementation of the architecture was realized in two stages, with two 

self-descripting entities, one in Node-RED and one in Ignition Perspective. The 

implementation centers on bidirectional synchronization between Node-RED 

and Ignition, both capable of generating template instances. Instance 

definitions, comprising graphical components, structural values, and 

metadata, are serialized into JSON payloads and propagated to the UNS. 

Consumer environments subscribe to these payloads, reconstruct dashboards 

upon changes, and act as secondary visualization layers. Once dashboards are 

registered in the UNS, any modification is automatically serialized, published, 

and synchronized across platforms, eliminating dependency on a single tool 

and ensuring independent interoperability. 

To move beyond static interfaces, dashboards are treated as structured data 

objects. Each element, symbols, buttons, or indicators, is assigned metadata 

describing type, tag, position, and dimension. Attributes are extracted at 

runtime via the Document Object Model (DOM), with coordinates, bounding 

boxes, and process parameter values systematically encoded into hierarchical 

JSON objects. This serialization produces a digital twin of the dashboard, 

transmitted as a Sparkplug B payload to the UNS, where it becomes accessible 

to all subscribing entities capable of interpretation. 

To strengthen industrial compliance and system robustness, a logging and 

traceability mechanism was integrated for all components. Each structural 

modification to a dashboard definition is recorded with its timestamp and 

published to the UNS on a dedicated topic, ensuring auditable evidence of 

changes. This functionality is particularly relevant in regulated industrial 

contexts and represents an initial step toward the digital passport concept 

[201]. The mechanism functions symmetrically across environments, 

capturing both user-triggered and script-based events. These are serialized 

into JSON entries and disseminated via MQTT, making traceability data 

instantly available to consumers. Simultaneously, all records are stored in a 

database, creating a historical archive for long-term auditing and analysis. 

Each entry includes contextual details such as the originating platform (Node-

RED or Ignition) and precise timestamps, thereby clarifying authorship, 

reducing ambiguity, and supporting troubleshooting. 
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From an operational perspective, the mechanism ensures compliance with 

industry standards requiring auditable change records. By embedding 

traceability data into the UNS alongside process and structural information, 

the solution elevates its importance within the digital transformation 

framework. The overall solution implementation is illustrated in Fig. 5.3-2. 

 

Fig.  5.3-2 Functional diagram 

 

5.3.2 Case Study and Results 

The first case study demonstrates a PLC-level Node-RED development that 

exposes structured and contextualized data into an MQTT-based UNS using 

the Sparkplug B standard. An Ignition layer, acting as a Sparkplug B client, 

consumes this data. Node-RED generates the datatype and initial instances, 

while subscribers automatically deploy the structured payload, including 

graphical diagram representations, into Perspective views. Data propagation 

occurs only upon publisher-side changes, and any consumer may also act as 

a publisher. Thus, Node-RED and Ignition function as both subscribers and 
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publishers, achieving bidirectional synchronization after initialization, 

independent of the original data source. 

The case study focuses on pump-related process data, including attributes 

such as speed, pumped flow rate, measurement units, states, controls, and 

faults. Four operational states (Word-type values 0–3) were defined, reflecting 

common automation practices, with transitions linked to speed levels. Three 

faults, over-temperature, over-current, and leakage, were encoded bit-wise 

in Word tags. All data were associated with graphical representations and 

published within the UNS as complete dashboard instances. 

The scenario validated correct data generation and synchronization between 

Node-RED and Ignition. As shown in Fig. 5.3-3, all elements, including the 

graphical pump symbol, control button, and analog displays for speed and 

flow, were consistently reproduced in Ignition. Real-time process values were 

directly bound to Ignition tags, ensuring system-wide data consistency. 

 
a)                                                                                        b) 

Fig.  5.3-3 Pump UI representation in: a) Node-RED dashboard, b) Ignition Perspective view 

The second scenario evaluated the system’s ability to propagate and respond 

to structural modifications. In this demonstration, graphical elements in the 

Node-RED dashboard, specifically the flow label and text field, were 

repositioned downward. The updated JSON payload was then published by 

Node-RED and, upon receipt, Ignition reprocessed the view.json file to update 

its interface. As shown in Fig. 5.3-4, the flow display elements were correctly 

repositioned within Ignition to match the Node-RED layout. No inconsistencies 

were detected, confirming the synchronization mechanism’s effectiveness in 

handling real-time structural changes. 

The third scenario examined resizing operations, beginning with the 

dimensions shown in Fig. 5.3-5. In this case, the speed label component was 

resized within the Node-RED dashboard. The modification triggered 

publication of a new JSON payload, which was subsequently ingested by 
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Ignition. The Ignition view accurately reflected the resized element, 

preserving readability and structural coherence. 

Across all tested scenarios, dynamic bindings to process data tags remained 

intact and unaffected by structural changes, thereby ensuring consistent 

functionality and maintaining data integrity throughout interface adaptations. 

 
                                                 a)                                                                                        b) 

Fig.  5.3-4 Pump UI representation after increased spacing in: a) Node-RED dashboard, b) Ignition Perspective view 

 
                                                 a)                                                                                        b) 

Fig.  5.3-5 Pump UI representation after item resize in: a) Node-RED dashboard, b) Ignition Perspective view 

The final scenario proves bidirectional modification of the generating instance. 

In earlier experiments, Node-RED acted as the template generator, with 

changes propagated to Ignition. In this case, the instance was altered within 

Ignition, which functioned as the publisher, while Node-RED consumed the 

updated data. As shown in Fig. 5.3-6, the resized pump graphical descriptor 

was successfully propagated back from Ignition to Node-RED. This confirms 

that, regardless of the original data generator, both functional and graphical 

representations can be modified by any subscriber with publishing rights. 

The second case study is where Ignition serves as the initial instance 

generator, exposing structured data to the UVS/UNS through its custom view 

manipulation mechanism. To maintain consistency with earlier evaluations, 
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the first scenario verifies the correct generation of dashboards published by 

Ignition Perspective and consumed in Node-RED. As shown in Fig. 5.3-7, all 

elements were faithfully reproduced within Node-RED. Real-time process 

values remained directly bound to Node-RED process tags, ensuring system-

wide data consistency. 

 
                                                 a)                                                                                        b) 

Fig.  5.3-6 Representation after pump graphical descriptor increase in size: a) Ignition – now as publisher, b) Node-
RED - consumer 

 

Fig.  5.3-7 UI representation in: a) Ignition 
Perspective view, b) Node-RED dashboard 

 

Fig.  5.3-8 UI representation after element reposition in: a) 
Ignition Perspective view, b) Node-RED dashboard 

To further validate the solution, structural modifications were applied within 

the Ignition view by repositioning two template elements, the “Power” 

indicator shifted from right to left, and the command button placed beneath 

the pump descriptor. As shown in Fig. 5.3-8, the Node-RED dashboard 

accurately mirrored these changes, confirming correct synchronization of 

structural updates between environments. 
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The resizing experiment began with the user interface shown in Fig. 5.3-9, 

where the dimensions of the right-side textboxes were modified. These 

changes were captured by the synchronization mechanism, serialized, and 

transmitted to the UNS. Node-RED successfully consumed the updated 

payload and accurately rendered the resized elements. 

 
Fig.  5.3-9 UI representation after resizing in: a) Ignition Perspective view, b) Node-RED dashboard 

Beyond synchronization, a key requirement of the implementation is the 

traceability mechanism, serving as a foundation for a software-based digital 

passport within the UVS/UNS. In this scenario, every template modification 

triggers a log entry identifying the authoring platform (Node-RED or Ignition) 

and its timestamp. These traces are published to the UNS, with examples 

shown in Fig. 5.3-10. For long-term auditing, all records are persisted in a 

dedicated database, with PostgreSQL selected for this case. 

 
Fig.  5.3-10 JSON payload containing traceability data 

The traceability mechanism was evaluated for the tested scenarios. 

Modification within instances descriptors were logged and reflected into the 

database. Traces are shown in Fig. 5.3-11 for auditing as database entries. 
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Fig.  5.3-11 Database table containing historical traceability data 

When addressing solutions involving graphical data transmission, latency 

considerations must be evaluated. The proposed approach employs Sparkplug 

B to transmit structured, contextualized, and graphically enriched data, with 

time-based measurements used to assess viability. Two aspects are central: 

the impact of rendering and the overhead introduced by graphical descriptors 

in transmission. Latency measurements across all experiments showed that 

data transmission times were consistent in both case studies, regardless of 

the publisher. However, rendering durations were consistently higher in Node-

RED compared to Ignition. Accordingly, results are reported in the worst-case 

scenario, with rendering performed in Node-RED. Figures 5.3-12 and 5.3-13 

illustrate comparative cases of data transmission with and without rendering, 

confirming that rendering contributes approximately 5–6ms to overall latency. 

 
Fig.  5.3-12 UDT transmission without Node-RED rendering 

 
Fig.  5.3-13 UDT transmission with Node-RED rendering 

Figures 5.3-14 and 5.3-15 are depicting comparatively situations where data 

instances are transmitted with and without graphical descriptors. It can be 

observed that the graphical representation weights under 1 ms. 
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Fig.  5.3-14 Transmission latency without graphical representation 

 
Fig.  5.3-15 Transmission latency with graphical representation 
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6 Scientific and academic development directions 

The current chapter presents briefly the scientific and teaching plan within the 

Automation and Applied Informatics Department. The subsequent progression 

of the academic career encompasses both the didactic and the scientific 

research components, with the two elements being intrinsically correlated. 

 

6.1.1 Teaching Development Plan 

The development of the teaching career aims at to continuously enhance 

specialty competencies, as well as psycho-pedagogical and managerial skills. 

The didactic activity will be underpinned by the following components: 

- Continuous improvement and updating of course and laboratory support 

materials for the subjects that are taught. 

- Diversification and continuous improvement of teaching methodologies, 

including interactive and collaborative methods, team-based learning, 

and group learning. 

- Creation of new laboratory works and systems. 

- Enhancement of laboratory infrastructure for the disciplines: 

"Automation Elements," "Industrial Internet of Things (IIoT),", "SCADA 

- Industrial Solutions for Data Acquisition and Supervisory Control.", etc.  

This will be achieved through involvement in drafting financing 

applications for non-reimbursable structural funds and securing 

sponsorships from relevant industry companies. 

Actions have already been undertaken to improve the teaching 

infrastructure, being an essential aspect of the taught domains. The 

infrastructure has to continuously improve to be able to cope with 

industrial evolution and new perspectives.  

- Drafting of two academic books in the fields of Industrial Internet of 

Things and SCADA.  

- Drafting a tutorial regarding conceptual and practical approach of Digital 

Transformation.  

- Proposing new disciplines in a close connection with the industry, 

especially for graduate level studies, and creating corresponding course 

and laboratory materials. 

- Continuation of existing collaborations and establishment of new 

partnerships with specialized companies and organizations to support 

didactic activities, organize meetings and workshops involving students, 
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and facilitate practical training (internships) and the supervision of 

bachelor's and master's theses. 

- Supervision of Bachelor and Master Theses within the approached 

research domains. 

- Coordinating Doctoral students. 

- Guidance of master students within the research programs related to 

the corresponding programmes. 

- Mentoring students in drafting research papers and participating in 

national and international scientific events. 

- Participation in continuous professional development courses and 

knowledge enhancement programs, organized by both higher education 

institutions and in collaboration with specialized companies. 

- Participation in teaching internships with universities abroad. 

 

6.1.2 Research Development Plan 

The research directions in the following period will be in close connection with 

Industry 4.0, 5.0, Digital Transformation, Artificial Intelligence, Digital Twin 

and IIoT domains.  Contributions are foreseen on the Operational Technology 

level, and on the Operational Technology connection with Information 

Technology level. Efficiency increase related studies will be made in close 

correlation with achieving Industry 5.0 pillars. Studies will be made to increase 

the edge level processing and the corresponding security level. The 

approached industries will be the water sector and the manufacturing.  

The scientific activity will be based on the following components: 

- Dissemination of research outcomes through the publication of scientific 

papers in specialized journals and conference proceedings, and 

participation in scientific events such as international conferences and 

exhibitions. Specifically, I will publish a minimum of two articles per year 

in ISI Web of Science indexed scientific journals, preferably those with 

a minimum impact factor of 0.5, and a minimum of one article per year 

in the proceedings of international conferences indexed in recognized 

international databases (e.g., IEEE, Scopus, Dblp).  

Furthermore, by attending international conferences annually, I aim to 

disseminate research results, exchange experiences, and share 

information with other researchers in the field. This scientific activity will 

thus contribute to enhancing the prestige of the Department of 



182 
 

Automation and Applied Informatics, the Faculty of Automation and 

Computer Engineering, and the Politehnica University of Timișoara. 

- Participation in the editorial boards of scientific journals and in the 

Scientific and Organizing Committees of international conferences. 

- Realizing reviewing activities for Web-of-Science indexed international 

journals and for conferences. 

- Participating in the evaluation activity for European research and 

development projects. 

- Writing project proposals and participating in working groups for 

drafting national and international research project proposals. Scientific 

research will be sustained and continued by obtaining funding following 

the submission of project proposals in national funding competitions, as 

well as by participating with foreign partners in drafting and submitting 

project proposals in international competitions. 

Undertaking research and development projects for the industry, 

especially in the digital transformation, IIoT and AI domains.  

- Accomplishing research objectives within work packages of research 

projects (e.g. HRIA – Romanian Hub for Artificial Intelligence).  

The two components (teaching and researching) of subsequent career 

development are intrinsically correlated, as the results obtained from research 

activities (including studies, methods, models, and technologies), especially 

those in close connection with the industry, will contribute to the continuous 

updating of curricula, course materials, and other didactic support resources 

for the disciplines. One of the objective in the research and development 

projects is to involve graduate and undergraduate students in the activities, 

to be able to elevate the quality of their theses, and to provide them an 

approach towards understanding and elaboration of scientific works. 

The development of my academic career is based on the following set of core 

values: openness to novelty, orientation towards applied research and 

learning, collaborative study, collegiality, and respect. My academic career 

development plan aims at raising the standards of academic and professional 

excellence, as well as fostering collaboration with colleagues and researchers 

in the field of systems engineering or related disciplines. 
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